
Approximation Algorithms for Unconstrained
Submodular Maximization

Nahom Seyoum1

Department of Computer Science
Yale University

2024

1nahom.seyoum@yale.edu

Contents

1 1/2 Tight Approximation 2
1.1 Paper introduction . 2
1.2 Motivation . 3

1.2.1 Previous Algorithms . 3
1.2.2 Theoretical Hard Bound . 3

1.3 Deterministic Algorithm . 3
1.3.1 Algorithm Setup and Explanation 3
1.3.2 Example Runthrough . 4
1.3.3 Proof of 1

3 Approximation . 5
1.3.4 Proof of Tightness . 8

1.4 Randomized Algorithm . 8
1.5 Submodular Max-SAT (SSAT) . 14

1.5.1 Intuition for the SSAT Algorithm . 14
1.6 Submodular Welfare with Two Players (2-Player SW) 15

1.6.1 Intuition for the 2-Player SW Result 15
1.7 Conclusion and Extensions . 15

1

Chapter 1

1/2 Tight Approximation

1.1 Paper introduction

The paper I am reviewing is titled A Tight Linear Time (1/2)-Approximation for Un-
constrained Submodular Maximization by Buchbinder et al. published in 2015 [BFNS15].
The paper outlines various approximation algorithms for Unconstrained Submodular Max-
imization. The goal of this report is to describe the intuition for some of the algorithms and
establish, in varying degrees of technical detail, the mathematics behind the algorithms
and their respective justifications.

I will be assuming a rudimentary understanding of submodularity, defined as follows.

Definition 1 (Submodular Function) Let f : 2X → R be a function. The function f
is called submodular if for any subsets S, T ⊆ X,

f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T).

An alternative definition of submodularity is the property of decreasing marginal values:
For any A ⊆ B ⊆ X and x ∈ X \B,

f(B ∪ {x})− f(B) ≤ f(A ∪ {x})− f(A).

The problem we are ultimately interested in studying, as aformentioned, is Uncon-
strained Submodular Maximization (USM). In USM, we are given a non-negative
submodular function, f : 2N → R+ and the goal is to identify a subset S ⊆ N that
maximizes the value of f(S). We are imposing no restrictions on the nature of the subset
S which makes it convenient to model multiple combinatorial problems like Max-Cut and
Max-SAT. It also has practical applications in optimization and game theory. Since the
problems that USM captures are usually NP hard, there is an impetus to come up with
approximation algorithms for it. The paper we are reviewing today presents multiple ap-
proximation algorithms which are significant improvements from the previous state of the
art algorithms.

2

1.2 Motivation

1.2.1 Previous Algorithms

The paper, in their literaure review, rehash some of the work done on USM by Feige
et al [FMV07]. Feige et al. showed that selecting a subset S ⊆ N uniformly at random
achieves a 1

4 - approximation to the optimal solution. They also introduced two local search
algorithms. The first local search algorithm directly optimizes the original submodular
function f achieving a 1

3 approximation. The second algorithm incorporates a noisy ver-
sion of f and achieves a 2

5 -approximation as it navigates local minimas slightly better.
Subsequent authors have introduced simulated annealing and revisions of it which have
yielded, at best, a 0.42-approximation

1.2.2 Theoretical Hard Bound

Feige et al., in the same work, established a fundamental limitation in the context of
optimizing symmetric submodular functions within the value oracle model. Specifically,
they proved that any algorithm attempting to achieve a better than 1

2 -approximation for
such functions must make an exponential number of queries to the value oracle. This
result implies that the 1

2 -approximations are tight.

Despite this limitation, there remains a gap between the theoretical bound established
by the paper and the best performance achieved by the algorithms discussed in Section
1.2.1. Thus, he primary goal ofBuchbinder et al. is to close this gap through an algorithm
that matches the theoretical bound. They outline a deterministic algorithm from which
they build the randomized algorithm, which ultimately achieves the 1

2 - tight bound.

1.3 Deterministic Algorithm

1.3.1 Algorithm Setup and Explanation

The algorithm is essentially a greedy algorithm. It begins with two sets: X0, initially
empty, representing a growing solution, and Y0, initially set to the entire ground set
N , representing a shrinking complement. It processes each element ui in a fixed or-
der, iteratively deciding whether to include it in X or exclude it from Y . At each
step, the algorithm calculates two marginal gains: ai, the gain from adding ui to Xi−1,
and bi, the gain from removing ui from Yi−1. Based on which marginal gain is greater,
the algorithm either adds ui to X and leaves Y unchanged, or excludes ui from Y
and leaves X unchanged. At the end, we get, Xn = Yn, which is the final solution.

3

Algorithm 1: DeterministicUSM

1 Initialize X0 ← ∅, Y0 ← N ;
2 for i = 1 to n do
3 Compute ai ← f(Xi−1 ∪ {ui})− f(Xi−1);
4 Compute bi ← f(Yi−1 \ {ui})− f(Yi−1);
5 if ai ≥ bi then
6 Xi ← Xi−1 ∪ {ui};
7 Yi ← Yi−1;
8 else
9 Xi ← Xi−1;
10 Yi ← Yi−1 \ {ui};

11 return Xn (or equivalently Yn);

1.3.2 Example Runthrough

Below we will work through a toy example to illustrate how the algorithm works. Consider
f , a signed area. In this case, intersections are counted only once, so it is clearly sub-
modular. The colored regions contribute positive area, and the white ”donut” contributes
negative area. The function f is bounded below by 0 to ensure non-negativity. We will
apply the deterministic algorithm to the above setup.

Figure 1.1: Toy example For Deterministic Algorithm

Initial State

X0 = ∅ (The growing solution starts empty.)
Y0 = {R,G,B,W} (Initially contains all regions: Red R, Green G, Blue B, and White W .)

Process u1 = R (Red Region)

Marginal gain for adding R to X:

a1 = f({R})− f(∅) ≥ 0 (since adding R increases the area.)

Marginal gain for removing R from Y :

b1 = f({G,B,W})−f({R,G,B,W}) ≤ 0 (since removing R amplifies the negative contribution of W .)

4

Since a1 ≥ b1, R is included in X:

X1 = {R}, Y1 = {R,G,B,W}.

Process u2 = G (Green Region) and u3 = B (Blue Region)

For both G and B: Adding the region (ai ≥ 0) increases the positive area and removing
the region (bi ≤ 0) reduces the total positive contribution.

Both G and B are added to X, resulting in:

X3 = {R,G,B}, Y3 = {R,G,B,W}.

Process u4 = W (White Donut)

Marginal gain for adding W to X:

a4 = f({R,G,B,W})−f({R,G,B}) ≤ 0 (as W contributes negatively to the total signed area.)

Marginal gain for removing W from Y :

b4 = f({R,G,B})−f({R,G,B,W}) ≥ 0 (as removing W eliminates its negative effect.)

Since a4 < b4, W is excluded:

X4 = {R,G,B}, Y4 = {R,G,B}.

1.3.3 Proof of 1
3
Approximation

Ultimately, we are interested in the performance of the above algorithm, and the paper
establishes that this achieves a 1

3 approximation.

There are two lemmas we need to prove to show this result.

Lemma 2 For every 1 ≤ i ≤ n, ai + bi ≥ 0.

The above lemma ultimately argues that the combined effect of adding an element to
one set and removing it from another related set does not decrease the overall function
value. We will not prove this result but it is easy to see that it follows directly from
submodularity.

Lemma 3 For every 1 ≤ i ≤ n,

f(OPTi−1)− f(OPTi) ≤
[
f(Xi)− f(Xi−1)

]
+
[
f(Yi)− f(Yi−1)

]
.

This lemma simply provides an upper bound on how much the value of the optimal solu-
tion, f(OPTi), decreases as the algorithm progresses through each iteration i. Specifically,
it states that the ”loss” in the value of OPT (the optimal solution set), at step i, which is
f(OPTi−1)−f(OPTi), is at most the combined increases in the values of the two solutions
maintained by the algorithm (Xi and Yi) during that same step.

In the following proof, we establish this in more technical detail.

5

Proof Recall the definitions from the algorithm: Initially, X0 = ∅ and Y0 = N . For each
i = 1, . . . , n, let

ai := f(Xi−1 ∪ {ui})− f(Xi−1), bi := f(Yi−1 \ {ui})− f(Yi−1).

The algorithm compares ai and bi at each iteration i: If ai ≥ bi, then Xi = Xi−1 ∪ {ui}
and Yi = Yi−1. Otherwise, if bi > ai, then Xi = Xi−1 and Yi = Yi−1 \ {ui}.
We define:

OPTi := (OPT ∪Xi) ∩ Yi.

Note that OPT0 = OPT and OPTn = Xn = Yn.
We must show that for every 1 ≤ i ≤ n,

f(OPTi−1)− f(OPTi) ≤ [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)].

Case 1: ai ≥ bi.
In this case, Xi = Xi−1 ∪ {ui} and Yi = Yi−1. Thus:

f(Xi)− f(Xi−1) = ai and f(Yi)− f(Yi−1) = 0.

Since Yi = Yi−1, we have

OPTi = (OPT ∪Xi) ∩ Yi = (OPT ∪ (Xi−1 ∪ {ui})) ∩ Yi−1.

Recall that OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1. Adding ui to Xi−1 while not changing Yi−1

gives:
OPTi = OPTi−1 ∪ {ui}.

Hence:
f(OPTi−1)− f(OPTi) = f(OPTi−1)− f(OPTi−1 ∪ {ui}).

Rearranging, we must prove:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ ai.

Consider two subcases:

If ui ∈ OPT, then f(OPTi−1) = f(OPTi−1 ∪ {ui}), so the left-hand side is 0. Since
ai ≥ bi and ai + bi ≥ 0 by Lemma II.1, it follows that ai ≥ 0. Thus 0 ≤ ai.

If ui /∈ OPT, then ui /∈ OPTi−1. By submodularity, for any A ⊆ B and any element z,

f(A)− f(A ∪ {z}) ≤ f(B)− f(B ∪ {z}).

Set A = OPTi−1 and B = Yi−1 \ {ui}. Since OPTi−1 ⊆ Yi−1 \ {ui}, we get:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ f(Yi−1 \ {ui})− f(Yi−1) = bi.

Since ai ≥ bi, we have f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ bi ≤ ai.

Thus, in both subcases under ai ≥ bi, we have the desired inequality.

Case 2: bi > ai.
In this case, Xi = Xi−1 and Yi = Yi−1 \ {ui}. By symmetry, interchanging the roles of X

6

and Y and the roles of ai and bi, a completely analogous argument shows:

f(OPTi−1)− f(OPTi) ≤ bi = [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)],

since in this case f(Xi)− f(Xi−1) = 0 and f(Yi)− f(Yi−1) = bi.

In both cases, we have proven that:

f(OPTi−1)− f(OPTi) ≤ [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)],

completing the proof. □

Theorem 4 There exists a deterministic linear time (1/3)- approximation algorithm for
the Unconstrained Submodular Maximization problem.

Proof From Lemma II.2, summing the inequality over all iterations i = 1, . . . , n, we have:

n∑
i=1

[f(OPTi−1)− f(OPTi)] ≤
n∑

i=1

[f(Xi)− f(Xi−1)] +
n∑

i=1

[f(Yi)− f(Yi−1)] .

We can use a simple telescoping argument for both sides of the inequality.

LHS:

n∑
i=1

[f(OPTi−1)− f(OPTi)] = f(OPT0)− f(OPTn).

RHS:

n∑
i=1

[f(Xi)− f(Xi−1)] = f(Xn)− f(X0),

n∑
i=1

[f(Yi)− f(Yi−1)] = f(Yn)− f(Y0).

Simplifying,

f(OPT0)− f(OPTn) ≤ (f(Xn)− f(X0)) + (f(Yn)− f(Y0)) .

Recall that OPT0 = OPT, OPTn = Xn = Yn, and X0 = ∅, hence:

f(OPT)− f(Xn) ≤ f(Xn) + f(Yn).

As Xn = Yn, we get:

f(OPT)− f(Xn) ≤ 2f(Xn) =⇒ f(Xn) ≥
f(OPT)

3
.

Thus, the algorithm achieves a (1/3)-approximation. □

7

1.3.4 Proof of Tightness

In the paper, they outline a way of proving that this analysis is tight through the following
weighted graph:

Figure 1.2: Weighted Graph For Proof of Tightness

The dashed edges (u1, u2) and (u1, u3) have weights of 1 − ϵ and all other edges have
weights of 1.
The optimal cut in the graph is the set S = {u1, u4, u5}, where:

• u1 is included to maximize the contribution of edges (u1, u2) and (u1, u3),

• u4 and u5 are included to maximize the contributions of edges leaving these nodes.

The weight of the edges in this cut is as follows:

f({u1, u4, u5}) = w(u1, u2) + w(u1, u3) + w(u4, u2) + w(u4, u3) + w(u5, u2) + w(u5, u3).

Substituting the weights:

f({u1, u4, u5}) = (1− ϵ) + (1− ϵ) + 1 + 1 + 1 + 1 = 6− 2ϵ.

Thus, the optimal solution has a cut weight of 6− 2ϵ.

Now, we simply have to think about the cut produced by the deterministic algorithm.

Applying the deterministic algorithm, we get the set: {u2, u3, u4, u5}.
Substituting the weights, we get 2.

Approximation Ratio =
f(Algorithm’s Cut)
f(Optimal Cut)

=
2

6− 2ϵ
≤ 1

3
+ ϵ

1.4 Randomized Algorithm

This algorithm is a probabilistic modification of the earlier deterministic algorithm. While
the deterministic version always makes a greedy choice by selecting ui based on whether
ai ≥ bi, this version introduces randomness by selecting ui with a probability proportional
to its marginal gain: ai

ai+bi
for inclusion in X and bi

ai+bi
for exclusion from Y. Since

we are dealing with probability, it ensures non-negative marginal gains by setting ai =
max(ai, 0) and bi = max(bi, 0),. It also defaults to a deterministic choice if both values
are zero.

8

Algorithm 2: RandomizedUSM
Input: f , N
Output: Xn (or equivalently Yn)

1 Initialize X0 ← ∅, Y0 ← N ;
2 for i = 1 to n do
3 Compute ai ← f(Xi−1 ∪ {ui})− f(Xi−1);
4 Compute bi ← f(Yi−1 \ {ui})− f(Yi−1);
5 Set ai ← max{ai, 0} and bi ← max{bi, 0};
6 With probability ai

ai+bi
do

7 Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1;
8 Otherwise (with complementary probability bi

ai+bi
):

9 Xi ← Xi−1, Yi ← Yi−1 \ {ui};
10 Note: If ai and bi = 0,

ai
ai+bi

= 1

11 return Xn (or equivalently Yn);

Ultimately, we are interested in the guarantee of the algorithm, which the authors claim
is 1

2 . To prove this result, they rely on Lemma 2 and the following lemma.

Lemma 5 For every 1 ≤ i ≤ n,

E
[
f(OPTi−1)− f(OPTi)

]
≤ 1

2
· E

[
f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)

]
.

High-Level Idea of Proof: The proof presented below is quite lengthy so I will attempt
to outline a road map and what we are doing in the proof. We need to establish the desired
inequality under the condition Xi−1 = Si−1, where Si−1 is some subset of {u1, . . . , ui−1}
that occurs with non-zero probability. Once we condition on this event, some variables
become fixed, simplifying the problem. We then consider three distinct cases based on the
signs of ai and bi. In each case, submodularity is used to bound the change in the value
of OPTi−1 when ui is either added or removed.

Proof
Consider an event of the form Xi−1 = Si−1 with Pr(Xi−1 = Si−1) > 0. Since this event
has positive probability, we can validly condition on it. Under this conditioning:

• We know Xi−1 = Si−1.

• Since Y0 = N and at each step we either remove an element from Y or leave Y
unchanged, after i− 1 steps:

Yi−1 = Si−1 ∪ {ui, . . . , un}.

• Also,

OPTi−1 = (OPT∪Xi−1)∩Yi−1 = (OPT∪Si−1)∩(Si−1∪{ui, . . . , un}) = Si−1∪(OPT∩{ui, . . . , un}).

Define:
ai := f(Xi−1 ∪ {ui})− f(Xi−1), bi := f(Yi−1 \ {ui})− f(Yi−1).

These values become constants once we condition on Xi−1 = Si−1.

9

By Lemma II.1, we have ai + bi ≥ 0. Hence, we cannot have both ai < 0 and bi < 0.

We have the following three cases

(i) ai ≥ 0 and bi ≤ 0, (ii) ai < 0 and bi ≥ 0, (iii) ai ≥ 0 and bi > 0.

Case 1: ai ≥ 0 and bi ≤ 0

Since bi ≤ 0 ≤ ai, it follows that ai ≥ bi. The algorithm chooses to add ui to X with
probability ai

ai+bi
= 1. Thus:

Xi = Xi−1 ∪ {ui} = Si−1 ∪ {ui}, Yi = Yi−1.

Since Yi = Yi−1, we have f(Yi)− f(Yi−1) = 0. Also:

OPTi = (OPT∪Xi)∩Yi = (OPT∪ (Si−1∪{ui}))∩ (Si−1∪{ui, . . . , un}) = OPTi−1∪{ui}.

We need to show:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ 1
2 [f(Xi)− f(Xi−1)] =

ai
2 .

Consider two subcases:

1. If ui ∈ OPT, then adding ui does not decrease the value of OPTi−1:

f(OPTi−1) = f(OPTi−1 ∪ {ui}) =⇒ f(OPTi−1)− f(OPTi−1 ∪ {ui}) = 0.

Since ai ≥ 0, we have 0 ≤ ai
2 .

2. If ui /∈ OPT, we have OPTi−1 ⊆ Yi−1 \ {ui}. By submodularity, the marginal
decrease from adding ui to OPTi−1 is at most the marginal decrease from adding it
to Yi−1 \ {ui}. Thus:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ f(Yi−1 \ {ui})− f(Yi−1) = bi.

Since bi ≤ 0 ≤ ai, we immediately get:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ bi ≤ 0 ≤ ai
2
.

Case 2: ai < 0 and bi ≥ 0
This case is symmetric to Case 1 with the roles of X and Y reversed. By an analogous
submodularity argument, we obtain the required inequality.

Case 3: ai ≥ 0 and bi > 0
In this case, both ai and bi are non-negative, and at least one of them is strictly positive.
The algorithm chooses its action with probabilities proportional to ai and bi:

• With probability ai
ai+bi
, we set Xi = Xi−1 ∪ {ui} and Yi = Yi−1.

• With probability bi
ai+bi
, we set Xi = Xi−1 and Yi = Yi−1 \ {ui}.

10

Taking expectations, we have:

E[f(Xi)−f(Xi−1)+f(Yi)−f(Yi−1)] =
ai

ai + bi
(f(Xi−1∪{ui})−f(Xi−1))+

bi
ai + bi

(f(Yi−1\{ui})−f(Yi−1)).

By the definitions of ai and bi:

ai = f(Xi−1 ∪ {ui})− f(Xi−1), bi = f(Yi−1 \ {ui})− f(Yi−1),

this simplifies to:

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
ai +

bi
ai + bi

bi =
a2i + b2i
ai + bi

.

Next, we consider the expected decrease in the value of OPT:

E[f(OPTi−1)−f(OPTi)] =
ai

ai + bi
[f(OPTi−1)−f(OPTi−1∪{ui})]+

bi
ai + bi

[f(OPTi−1)−f(OPTi−1\{ui})].

We must upper bound this quantity by aibi
ai+bi
.

To do this, we analyze two scenarios depending on whether ui is in OPTi−1:

If ui /∈ OPTi−1:

In this case, f(OPTi−1)− f(OPTi−1 \ {ui}) = 0 because removing an element not in the
set does not change the value. Thus, the second term vanishes:

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
[f(OPTi−1)− f(OPTi−1 ∪ {ui})].

Also, since ui ∈ Yi−1 and ui /∈ OPTi−1, we have OPTi−1 ⊆ Yi−1 \ {ui}. This means,
removing ui from Yi−1 does not affect any elements already in OPTi−1.

Since
OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1,

and ui /∈ OPTi−1, the set OPTi−1 is contained within Yi−1 \ {ui} because ui does not
contribute to the intersection. By submodularity:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ f(Yi−1 \ {ui})− f(Yi−1) = bi.

Therefore:

E[f(OPTi−1)− f(OPTi)] ≤
ai

ai + bi
bi =

aibi
ai + bi

.

If ui ∈ OPTi−1:

In this scenario, adding ui to OPTi−1 has no effect because ui is already in it. Thus:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) = 0.

Hence:

E[f(OPTi−1)− f(OPTi)] =
bi

ai + bi
[f(OPTi−1)− f(OPTi−1 \ {ui})].

11

Since ui ∈ OPTi−1, removing ui might decrease its value. Using a similar submodularity
argument but now with Xi−1 ∪ {ui} as the larger set containing OPTi−1 \ {ui}, we have:

f(OPTi−1)− f(OPTi−1 \ {ui}) ≤ f(Xi−1 ∪ {ui})− f(Xi−1) = ai.

Thus:

E[f(OPTi−1)− f(OPTi)] ≤
bi

ai + bi
ai =

aibi
ai + bi

.

In both subcases, we have:

E[f(OPTi−1)− f(OPTi)] ≤
aibi

ai + bi
.

Finally, substituting our bounds back into the main inequality, we get:

aibi
ai + bi

≤ 1
2 ·

a2i + b2i
ai + bi

.

Multiplying both sides by ai + bi (which is non-negative), we get:

aibi ≤ 1
2(a

2
i + b2i).

This inequality is equivalent to:
a2i + b2i ≥ 2aibi,

which follows from the arithmetic mean-geometric mean inequality or simply expanding
(ai − bi)

2 ≥ 0.

Therefore, our inequality is valid in all three cases under the conditioning event Xi−1 =
Si−1. Since this conditioning was arbitrary (but had non-zero probability), the inequality
holds unconditionally.

□

Theorem 6 There exists a randomized linear time (1/2)-approximation algorithm for the
Unconstrained Submodular Maximization problem.

A similar telescoping argument used in Theorem I can be applied to prove that the 1
2

approximation follows from the above lemma (Lemma 5).

Proof We sum the inequality over all iterations i = 1, . . . , n. On the left-hand side, we
have a telescoping sum of the form

n∑
i=1

[f(OPTi−1)− f(OPTi)] .

On the right-hand side, we have

1

2

n∑
i=1

[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] .

The telescoping nature simplifies these sums. The left-hand side collapses to f(OPT0)−

12

f(OPTn) since consecutive terms cancel out. Similarly, the right-hand side becomes

1

2
[(f(Xn)− f(X0)) + (f(Yn)− f(Y0))] .

Therefore, we have:

E [f(OPT0)− f(OPTn)] ≤
1

2
E [(f(Xn)− f(X0)) + (f(Yn)− f(Y0))] .

Since OPT0 = OPT and OPTn = Xn = Yn, we get:

E [f(OPT)− f(Xn)] ≤
1

2
E [f(Xn) + f(Yn)] .

Because Xn = Yn, this simplifies to:

f(OPT)− E [f(Xn)] ≤ 2E [f(Xn)] .

Rearranging, it follows that:

E [f(Xn)] ≥
f(OPT)

2
.

□

All of the above analysis forms the crux of the paper. However, they also present re-
sults and algorithms for various other types of submodular problems. I will outline
the main results and some of the intuition behind them but not delve deeply into the
proofs/justifications for why they work.

13

1.5 Submodular Max-SAT (SSAT)

The Submodular Max-SAT problem is a generalization of the classic Max-SAT problem.
Instead of a linear objective (counting satisfied clauses), we have a normalized monotone
submodular function f defined over the set of clauses. For a given assignment φ, let C(φ)
be the set of clauses satisfied by φ. The goal is to find an assignment φ that maximizes
f(C(φ)).

Theorem 7 (Theorem I.3) There exists a (3/4)-approximation algorithm for SSAT. In
other words, the algorithm finds an assignment φ whose value f(C(φ)) is at least (3/4)
times the value of an optimal assignment.

Algorithm 3: RandomizedSSAT

1 Initialize X0 ← ∅, Y0 ← N × {0, 1};
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ ui, 0)− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ ui, 1)− g(Xi−1).
5 bi,0 ← g(Yi−1 \ ui, 0)− g(Yi−1).
6 bi,1 ← g(Yi−1 \ ui, 1)− g(Yi−1).
7 si,0 ← max ai,0 + bi,1, 0.
8 si,1 ← max ai,1 + bi,0, 0.
9 with probability

si,0
si,0+si,1

do

10 Xi ← Xi−1 ∪ ui, 0, Yi ← Yi−1 \ ui, 1.
11 Otherwise (with complementary probability bi

ai+bi
):

12 Xi ← Xi−1 ∪ ui, 1, Yi ← Yi−1 \ ui, 0
13 Note: If si,0 = si,1 = 0, we assume

si,0
si,0+si,1

= 1.

14 return Xn (or equivalently Yn);

1.5.1 Intuition for the SSAT Algorithm

The SSAT algorithm starts by assigning both 0 and 1 to every variable, creating an
extended assignment where all clauses have the potential to be satisfied. This provides
maximum flexibility at the beginning. For each variable, the algorithm calculates the gain
in the objective value if the variable is fixed to 0 while removing 1, and separately if it
is fixed to 1 while removing 0. These gains are used to compare the two choices for each
variable.
Similar to our randomized algorithm earlier, this algorithm does not always pick the

larger gain. Instead, it makes a probabilistic decision, assigning the variable’s value based
on the relative sizes of the two gains. As the algorithm considers each variable, it gradually
removes the extra assignments, leaving each variable with only one value, either 0 or
1. By the end, all variables are assigned single truth values, which gives us a feasible
solution. The guarantee, as outlined in Theorem 7, is that this algorithm gives us a 3

4 -
approximation.

The authors also establish the following result in the paper:

Theorem 8 (Theorem IV.2) When the objective function f is linear (as in the classical
Max-SAT problem), Algorithm 3 can be implemented in linear time.

14

1.6 Submodular Welfare with Two Players (2-Player SW)

The final problem the authors engage with is the 2 Player submodular welfare problem. In
this problem, we are given a ground set N of items and k players, each with a normalized
monotone submodular utility function fi. The goal is to partition N into N1, N2, . . . , Nk

to maximize social welfare
∑k

i=1 fi(Ni).

Theorem 9 (Theorem I.4 for 2-player SW) When there are only two players, there
is a (3/4)-approximation algorithm for the Submodular Welfare problem. This result can
be obtained by reductions to SSAT or to the problem of Unconstrained Submodular Maxi-
mization (USM).

1.6.1 Intuition for the 2-Player SW Result

• With two players, each element is either assigned to player 1 or to player 2.

• We can encode this decision as a binary variable assignment problem: assigning
a variable to 0 corresponds to giving the corresponding element to player 1, and
assigning it to 1 corresponds to giving it to player 2.

• Using a suitable construction, we can represent the welfare objective as a sub-
modular function that depends on these assignments. Applying the (3/4) approx-
imation algorithm developed for SSAT or the USM techniques directly leads to a
(3/4) approximation for the 2-player welfare problem.

1.7 Conclusion and Extensions

All in all, the paper outlines various approximation algorithms for USM and related prob-
lems, including Submodular Max-SAT(SSAT) and 2 Player Submodular Welfare. They
establish that the deterministic and randomized algorithms for USM achieve approxima-
tion guarantees of 1/3 and 1/2, respectively, with the randomized algorithm matching the
theoretical hardness bound for symmetric submodular functions. For SSAT, a generalized
version of the classical Max-SAT problem, they establish a 3/4-approximation algorithm.
Similarly, the reduction techniques applied to the 2-player SW problem extend the 3/4
approximation to welfare maximization, which is a testament to the versatility of these
methods.
There is still significant work being done in the field of USM and there are multiple ways

this can be extended. One, it would be interesting to investigate whether approximation
guarantees depend intrinsically on the curvature or modularity ratio of the submodular
function. Furthermore, we can try and study online or streaming versions of the prob-
lem using advanced probabilistic tools, like stochastic gradients or dynamic programming
on submodular lattices. There is already some work being done in this regard [RW18]
but there is still quite some unanswered questions when it comes to the generality of the
developed algorithms. Finally, we can try and apply the architecture of the algorithms
developed here to real world scenarious I encounter in my research such as network opti-
mization(for trains!) and distributed systems.

15

Bibliography

[BFNS15] Buchbinder, Feldman, Naor, and Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. Siam J. Comput,
44:1384, 2015.

[FMV07] Feige, Mirrokni, and Vondrak. Maximizing non-monotone submodular func-
tions. 48th Annual IEEE Symposium on Foundations of Computer Science,
pages 461–471, 2007.

[RW18] Roughgarden and Wang. An optimal learning algorithm for online uncon-
strained submodular maximization. Proceedings of Machine Learning Research,
75:1–19, 2018.

16

	1/2 Tight Approximation
	Paper introduction
	Motivation
	Previous Algorithms
	Theoretical Hard Bound

	Deterministic Algorithm
	Algorithm Setup and Explanation
	Example Runthrough
	Proof of 13 Approximation
	Proof of Tightness

	Randomized Algorithm
	Submodular Max-SAT (SSAT)
	Intuition for the SSAT Algorithm

	Submodular Welfare with Two Players (2-Player SW)
	Intuition for the 2-Player SW Result

	Conclusion and Extensions

