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Introduction
Classical inequalities involving sample means, such as those related to the law of large numbers or central
limit theorems, are well-studied under linear expectations. However, in settings involving uncertainty and
model ambiguity, the assumption of linearity is too restrictive. This has motivated a growing interest in
sublinear expectations, which allow for a broader class of measures and can better capture uncertainty.

A key development in this area is the representation of a sublinear expectation Ê as the supremum over a
convex, weakly compact family of probability measures P. In this framework, the distribution of a random
vector X under Ê corresponds to a range of possible linear expectations {EP [X] : P ∈ P}, forming a convex
and compact subset of Rd. By applying the separation theorem, each sublinear expectation induces a unique
convex, compact set Θi ⊂ Rd such that

Θi = {EP [Xi] : P ∈ P}.

In this paper[5], we consider independent Rd-valued random vectors {Xi}n
i=1 under a regular sublinear expec-

tation. Our first main contribution is a straightforward argument—avoiding any polytope assumptions—to
show that the set Θi fully characterizes the expectations of each Xi. Building on this, we establish inequalities
involving the sample mean 1

n

∑n
i=1 Xi. In particular, defining

Θ =
{

1
n

n∑
i=1

θi : θi ∈ Θi

}
and a suitable “distance”

ρΘ(x) = inf
θ∈Θ

|x− θ|,

we obtain an inequality of the form

Ê

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ σ2

n

n
,

where

σ2
n = sup

i≤n
inf

θ∈Θi

Ê[|Xi − θ|2].

Further application of Sion’s minimax theorem and Lusin’s theorem yields a minimax characterization of
the infimal variance bound over random vectors ξ taking values in Θ.

Preliminary Results
Definition of Sublinear Expectation

Below are the key properties defining a regular sublinear expectation Ê : H → R on H = Cb.Lip(Ω).

1. Monotonicity: If X(ω) ≥ Y (ω) for all ω, then Ê[X] ≥ Ê[Y ].
If one function is always greater than another, its expected value should be no smaller.

2. Constant Preserving: For any constant c, Ê[c] = c.
A sure payoff equals its own expectation.
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3. Subadditivity: For all X,Y , Ê[X + Y ] ≤ Ê[X] + Ê[Y ].
The expectation is “conservative”: combining risks does not reduce the total risk below the sum of
individual parts.

4. Positive Homogeneity: For λ ≥ 0, Ê[λX] = λÊ[X].
Scaling a variable by a nonnegative factor scales its expectation by the same amount.

5. Regularity: If Xn ↓ 0 pointwise, then Ê[Xn] ↓ 0.
As a sequence of random variables decreases to zero, their expectations also decrease to zero, ensuring
a form of continuity.

The first preliminary theorem we establish is the following:

Theorem 2.1
There exists a convex and weakly compact set of probability measures P on (Ω,B(Ω)) such that:

Ê[X] = sup
P ∈P

EP [X], for X ∈ H,

where B(Ω) is the Borel σ-field.

They do not present a proof for it but claim it follows naturally from sources 1 and 4. It was initially not
intuitive but this is how we reconstructed it.

Proof(2.1)

We begin with Ê : H → R having the sublinear properties outlined above. Our goal is to write Ê[X] as
supL L[X], where each L is linear and satisfies L[X] ≤ Ê[X] for all X ∈ H. To achieve this, we use a version
of the Hahn–Banach theorem adapted for sublinear dominance:

Let p : V → R be a sublinear functional on a real vector space V . Suppose W ⊂ V is a linear subspace
and f : W → R is a linear functional with f(x) ≤ p(x) for all x ∈ W . Then there exists a linear extension
F : V → R of f such that F (x) ≤ p(x) for all x ∈ V .

Apply this lemma with p = Ê and start from simple linear functionals defined on small subspaces (e.g.,
just constants). By iterating Zorn’s lemma and extending step by step, we construct a family L of linear
functionals L : H → R such that each L is positive (due to monotonicity preservation) and dominated by Ê:

L[X] ≤ Ê[X], ∀X ∈ H.

Moreover, this construction guarantees

Ê[X] = sup
L∈L

L[X], ∀X ∈ H.

Each L ∈ L is linear, positive, and satisfies a continuity-from-above condition inherited from the regularity of
Ê. By the Daniell–Stone representation theorem, there exists a unique probability measure PL on (Ω,B(Ω))
such that

L[X] = EPL
[X] =

∫
Ω
X(ω)PL(dω), ∀X ∈ H.

Hence each L ∈ L corresponds to a probability measure PL. Set P := {PL : L ∈ L}. Then we have

Ê[X] = sup
P ∈P

EP [X].

If P1, P2 ∈ P, then for any α ∈ [0, 1], αP1 + (1 − α)P2 also induces a linear functional X 7→ αEP1 [X] + (1 −
α)EP2 [X] which is still ≤ Ê[X]. Thus αP1 + (1 − α)P2 ∈ P, showing P is convex. To show P is weakly
compact, we first prove tightness. By the structure of Ê, for any ϵ > 0, we can find a compact set Kϵ ⊂ Ω
such that

P (Kϵ) ≥ 1 − ϵ, ∀P ∈ P.
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This is because if mass escaped arbitrarily, it would contradict the regularity and monotonicity conditions on
Ê. Thus P is a tight family of probability measures. By Prokhorov’s theorem, a tight family of probability
measures on a Polish space (and Ω, being complete and separable, is Polish) is relatively weakly compact.
Hence every sequence in P has a weakly convergent subsequence. Let (Pn)n≥1 be a sequence in P that
converges weakly to some probability measure P∗. For each X ∈ H, since EPn [X] ≤ Ê[X] and H consists of
bounded continuous functions, weak convergence yields EPn

[X] → EP∗ [X]. By taking limits and using that
Ê[X] is the supremum over all P-expectations, we get:

EP∗ [X] ≤ Ê[X], ∀X ∈ H.

This shows P∗ also induces a linear functional dominated by Ê. By the construction of P, such a limit
measure must also lie in P. Thus, P is not only relatively weakly compact but also closed under weak limits,
ensuring P is weakly compact.

Now we need to set up other important properties of this space and the expectations.

Construction of Lp(Ω)-Spaces

For each fixed p ≥ 1, define a norm on H by

∥X∥p :=
(
Ê [|X|p]

)1/p

, X ∈ H.

Since Ê is monotone and positively homogeneous, and since Ê[|X|p] is finite for all X ∈ H (bounded and
Lipschitz implies boundedness of X, ensuring finiteness of Ê[|X|p] for every p), ∥ · ∥p is a well-defined norm
on H.

By taking the completion of H with respect to the ∥ · ∥p-norm, we obtain a Banach space Lp(Ω). Elements
of Lp(Ω) are equivalence classes of Cauchy sequences in H under the ∥ · ∥p-norm. Formally,

Lp(Ω) = H∥·∥p
.

Hölder’s inequality in this sublinear context ensures that if p ≥ 1, then Lp(Ω) continuously embeds into
L1(Ω). In other words, for all p ≥ 1,

Lp(Ω) ⊆ L1(Ω).

This embedding is justified by an inequality of the form:

Ê [|XY |] ≤
(
Ê[|X|p]

)1/p (
Ê[|Y |q]

)1/q

,

with 1
p + 1

q = 1, showing that any p-integrable random variable is also 1-integrable.

Extension of Ê to L1(Ω)

Since H is dense in L1(Ω) and Ê is initially defined on H, we can extend Ê to all of L1(Ω). By the completion
process, every X ∈ L1(Ω) is the limit of a sequence (Xn)∞

n=1 ⊂ H such that ∥Xn −X∥1 → 0. Define:

Ê[X] := lim
n→∞

Ê[Xn].

This limit is well-defined and does not depend on the choice of the approximating sequence because if (Yn)
is another sequence with Yn → X in L1(Ω), then ∥Xn − Yn∥1 → 0, and hence Ê[|Xn − Yn|] → 0. By
monotonicity and subadditivity, Ê[Xn] − Ê[Yn] → 0, showing consistency.

5



In addition, Ê is still a regular sublinear expectation on L1(Ω). Regularity, monotonicity, and the other
properties extend to this bigger space since limits are taken in the ∥ · ∥1-norm.

Inclusion of Cb(Ω) in L1(Ω)

The space Cb(Ω) denotes all bounded and continuous functions Ω → R. By the Stone–Weierstrass theorem
(or related approximation theorems), for any bounded continuous f : Ω → R and for any ϵ > 0, there exists a
sequence of functions in H = CLip

b (Ω) that converge uniformly to f . Uniform convergence plus boundedness
ensure convergence in the ∥ · ∥1-norm because:

∥f − g∥1 =
(
Ê[|f − g|]

)1/1
≤ Ê[∥f − g∥∞] = ∥f − g∥∞

for bounded functions f, g. Thus f ∈ L1(Ω). This shows that:

Cb(Ω) ⊆ L1(Ω).

Since H = CLip
b (Ω) ⊆ Cb(Ω), we also have H ⊆ L1(Ω).

Random Vectors in Lp(Ω;Rd)

A d-dimensional random vector X = (X1, . . . , Xd) is said to be in Lp(Ω;Rd) if and only if each Xi ∈ Lp(Ω).
This means:

Ê[|Xi|p] < ∞ for all i = 1, . . . , d.

We can define a norm on Lp(Ω;Rd) by:

∥X∥p :=
(

d∑
i=1

Ê[|Xi|p]
)1/p

.

This makes Lp(Ω;Rd) a Banach space and again, since p ≥ 1, we have:

Lp(Ω;Rd) ⊆ L1(Ω;Rd).

Distribution Functionals Under Ê

Given a random vector X ∈ L1(Ω;Rd), define its distribution under Ê as a functional:

F Ê
X : CLip

b (Rd) → R, F Ê
X [ϕ] := Ê[ϕ(X)].

Here, ϕ : Rd → R is bounded and Lipschitz. Such ϕ are chosen to ensure that ϕ(X) ∈ L1(Ω).

Indepencence of Random Vectors
Although it is not necessarily a result, the definition of independent random vectors in a sublinear setting
incredibly interesting. As such, we will walk through components of the definition.
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Definition

Let {Xi}∞
i=1 ⊂ L1(Ω;Rd), where each Xi = (X1

i , . . . , X
d
i ) is a d-dimensional random vector with components

Xj
i ∈ L1(Ω) (i.e., E[|Xj

i |] < ∞ for all j).

For infinite sequences, the sequence {Xi}∞
i=1 is called independent if for all i ≥ 1,

E[ψ(X1, . . . , Xi, Xi+1)] = E[E[ψ(x1, . . . , xi, Xi+1)](x1, . . . , xi = (X1, . . . , Xi))],

for every test function ψ ∈ Cb.Lip(Rd·(i+1)).

Similarly, for a finite sequence {Xi}n
i=1 ⊂ L1(Ω;Rd), where n > 1, the sequence is independent if for all

1 ≤ i ≤ n− 1,

E[ψ(X1, . . . , Xi, Xi+1)] = E[E[ψ(x1, . . . , xi, Xi+1)](x1, . . . , xi = (X1, . . . , Xi))],

for every test function ψ ∈ Cb.Lip(Rd·(i+1)).

Interpretation of the Independence Property

Let ψ(x1, . . . , xi, xi+1) represent a function of the joint random vector (X1, . . . , Xi, Xi+1). The independence
condition states that the expectation of ψ under E can be decomposed as:

E[ψ(X1, . . . , Xi, Xi+1)] = E[E[ψ(x1, . . . , xi, Xi+1)](x1, . . . , xi = (X1, . . . , Xi))].

1. Inner Expectation:
• E[ψ(x1, . . . , xi, Xi+1)]: This is the expectation of ψ, treating X1, . . . , Xi as fixed parameters. It

evaluates the influence of Xi+1 on ψ, conditional on X1, . . . , Xi.
2. Outer Expectation:

• E[·]: This computes the expectation over the randomness of X1, . . . , Xi, which is akin to averaging
over all possible realizations of the preceding random vectors.

In classical probability theory, independence is defined using conditional expectations:

E[ψ(X1, . . . , Xi, Xi+1)] = E[E[ψ(X1, . . . , Xi, Xi+1)|X1, . . . , Xi]].

In the sublinear expectation framework, we replace E with E∧, which may not be additive. The generalization
still preserves the notion of “independence” by making sure that Xi+1’s distribution is unaffected by the
earlier sequence (X1, . . . , Xi).

Perhaps the neatest part of the result, in our estimation at least, is the recursive nature of the definition.
(X1, . . . , Xi) are independent if Xi+1 is independent of (X1, . . . , Xi). This means that the sequence can be
studied incrementally (LLN and CLT)!

The final preliminary result we establish is the following proposition:

Proposition 2.3
Let {Xi}n

i=1 be independent random vectors in L2(Ω;Rd) under Ê. Then, for each P ∈ P and ϕ ∈ CLip(Rd),
we have

EP [ϕ(Xi) | Fi−1] ≤ Ê[ϕ(Xi)], P -a.s., for i ≤ n,

where P is given in Theorem 2.1, CLip(Rd) denotes the space of Lipschitz functions on Rd, Fi = σ(X1, . . . , Xi)
for i ≥ 1, and F0 = {∅,Ω}.
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Again, there is no proof presented for this in the paper apart from a reference to a paper but we have
reconstructed it below using some machinary from source 6.

Proof (2.3)

Define the event:

B :=
{
EP [ϕ(Xi) | Fi−1] > Ê [ϕ(Xi)]

}
.

Since EP [ϕ(Xi) | Fi−1] is Fi−1-measurable, we know B ∈ Fi−1. We aim to show P (B) = 0 for each P ∈ P.

Suppose, for the sake of contradiction, that there exists some P ∈ P with P (B) > 0.

Because B ∈ Fi−1, there exists a Borel set F ⊆ Rd(i−1) such that:

B ⊇ {(X1, . . . , Xi−1) ∈ F} ,

and hence:

P (X1, . . . , Xi−1 ∈ F ) ≥ P (B) > 0.

On the event {X1, . . . , Xi−1 ∈ F}, we have:

EP [ϕ(Xi) | X1, . . . , Xi−1] > Ê [ϕ(Xi)] .

The set F is measurable, but the indicator function IF (x1, . . . , xi−1) is generally not Lipschitz. Since our
functions need to be in CLip(Rd) or at least constructed from such, we approximate IF using bounded
Lipschitz functions. This is a standard functional analytic argument:

By Urysohn’s lemma and standard approximation arguments, or by Tietze’s extension theorem, we can
construct a sequence of functions (ϕk)k≥1 ⊂ CLip(Rd(i−1)) such that:

0 ≤ ϕk(x1, . . . , xi−1) ≤ 1 for all k,

and:

ϕk(x1, . . . , xi−1) ↓ IF (x1, . . . , xi−1) pointwise as k → ∞.

This approximation ensures that we can uniformly approximate the indicator of F by bounded Lipschitz
functions from above.

We know that on F , the conditional expectation under P of ϕ(Xi) is strictly greater than Ê[ϕ(Xi)]. To
exploit this, we want to link this inequality to a contradiction involving the definition of Ê.

Let us define a suitable “centering” that will help create a contradiction. Since ϕ is bounded Lipschitz,
Ê[ϕ(Xi)] is well-defined and finite. Let:

m := Ê[ϕ(Xi)].

Consider the shifted random variable ϕ(Xi) −m. Its Ê-expectation is at most zero by definition (since Ê is
sublinear and Ê[ϕ(Xi)] = m, we have Ê[ϕ(Xi)−m] ≤ m−m = 0). Actually, since Ê[ϕ(Xi)] = m, there exists
some P ∗ ∈ P for which EP ∗ [ϕ(Xi)] approximates m from below or equals it—this ensures Ê[ϕ(Xi)−m] ≤ 0.

Now define, for each integer N ≥ 1, a truncated function:

8



fN (xi) := ((ϕ(xi) −m) ∧N) ∨ (−N).

This ensures fN : Rd → R is Lipschitz and bounded by N . As N → ∞, fN (xi) → ϕ(xi) − m pointwise.
Also, since ϕ(xi) is bounded, choose N large enough so that fN (xi) = ϕ(xi) − m for all xi (no truncation
needed if N exceeds the essential bound of ϕ). Thus for sufficiently large N :

fN (Xi) = ϕ(Xi) −m.

We now define the key test functions:

ψk,N (x1, . . . , xi−1, xi) := ϕk(x1, . . . , xi−1) · fN (xi).

Each ψk,N is the product of two bounded Lipschitz functions, hence ψk,N ∈ CLip(Rdi).

By definition:
EP [ψk,N (X1, . . . , Xi)] = EP [ϕk(X1, . . . , Xi−1) · fN (Xi)].

On the event {X1, . . . , Xi−1 ∈ F}, we have

EP [ϕ(Xi) | X1, . . . , Xi−1] > m = Ê[ϕ(Xi)],

and hence
EP [fN (Xi) | X1, . . . , Xi−1] = EP [ϕ(Xi) −m | X1, . . . , Xi−1] > 0,

(for large enough N , fN (Xi) = ϕ(Xi) −m exactly).

Since ϕk ↓ IF , by the monotone convergence theorem (applied under P ), we have

lim
k→∞

EP [ϕk(X1, . . . , Xi−1)fN (Xi)] = EP [IF (X1, . . . , Xi−1)fN (Xi)].

Moreover, on {X1, . . . , Xi−1 ∈ F}, IF (X1, . . . , Xi−1) = 1, so

EP [IF (X1, . . . , Xi−1)fN (Xi)] = EP (EP [IF (X1, . . . , Xi−1)fN (Xi) | X1, . . . , Xi−1]).

Since IF is Fi−1-measurable,

EP [IF (X1, . . . , Xi−1)fN (Xi) | X1, . . . , Xi−1] = IF (X1, . . . , Xi−1)EP [fN (Xi) | X1, . . . , Xi−1].

On F , this is strictly positive. Thus

EP [IF (X1, . . . , Xi−1)fN (Xi)] > 0,

and hence for sufficiently large k,
EP [ψk,N (X1, . . . , Xi)] > 0.

Now, recall that Ê is sublinear and
Ê[X] = sup

Q∈P
EQ[X].

In particular, for any X, EP [X] ≤ Ê[X].

Apply this to X = ψk,N (X1, . . . , Xi):

EP [ψk,N (X1, . . . , Xi)] ≤ Ê[ψk,N (X1, . . . , Xi)].
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We also know from the independence property under Ê that since ψk,N factors into a function of
(X1, . . . , Xi−1) times a function of Xi, we have

Ê[ψk,N (X1, . . . , Xi)] = Ê[ϕk(X1, . . . , Xi−1)fN (Xi)].

By the definition of independence (and considering that fN (Xi) = ϕ(Xi) − m), it can be shown that
Ê[ϕk(X1, . . . , Xi−1)fN (Xi)] factors into Ê[ϕk(X1, . . . , Xi−1)]Ê[fN (Xi)] or is at most Ê[ϕk(X1, . . . , Xi−1)] max(Ê[fN (Xi)], 0)
due to sublinearity and the “independence” structure.

Since ϕk is bounded and approximates an indicator, Ê[ϕk(X1, . . . , Xi−1)] is finite and converges to
Ê[IF (X1, . . . , Xi−1)].

Crucially, because Ê[ϕ(Xi)] = m, we have Ê[ϕ(Xi) − m] ≤ 0. By the boundedness of ϕ, as N grows large
enough so that no truncation occurs, Ê[fN (Xi)] = Ê[ϕ(Xi) −m] ≤ 0.

Thus,
Ê[ψk,N (X1, . . . , Xi)] ≤ Ê[ϕk(X1, . . . , Xi−1)] · 0 = 0.

This implies
EP [ψk,N (X1, . . . , Xi)] ≤ 0.

But previously, we derived that for large enough k,N ,

EP [ψk,N (X1, . . . , Xi)] > 0.

This is a direct contradiction. Since P ∈ P was arbitrary, we conclude that for every P ∈ P,

EP [ϕ(Xi) | Fi−1] ≤ Ê[ϕ(Xi)], P -a.s.

Main Results
There are three major results established in this paper. Theorem 3.1 identifies the set Θi as exactly the
collection of all possible expectations EP [Xi] for P ∈ P, and shows that the conditional expectations EP [Xi |
Fi−1] also lie in Θi almost surely. Theorem 3.2 bounds the “variance” of the sample mean under sublinear
expectations by σ2

n

n where σ2
n is a measure of dispersion controlled by the sets Θi. Finally, theorem 3.4 ,

using Sion’s minimax theorem and L2(Ω; Θ)-approximations, establishes that the order of taking an infimum
over ξ and a supremum over P can be interchanged, which gives us a minimax characterization of the best
achievable variance bound within Θ.

Before outlining their proofs in more detail, we will first establish some machinary to assist us.

Let {Xi}n
i=1 be independent random vectors in L2(Ω;Rd) under Ê. For each i ≤ n, define gi : Rd → R as

follows:

Let
gi(p) := E[⟨p,Xi⟩], p ∈ Rd.

For p1, p2 ∈ Rd:
gi(p1 + p2) = E[⟨p1 + p2, Xi⟩] = E[⟨p1, Xi⟩ + ⟨p2, Xi⟩].

By the subadditivity of E:

gi(p1 + p2) ≤ E[⟨p1, Xi⟩] + E[⟨p2, Xi⟩] = gi(p1) + gi(p2).

For λ ≥ 0 and p ∈ Rd:
gi(λp) = E[⟨λp,Xi⟩] = E[λ⟨p,Xi⟩].

By positive homogeneity of E:
gi(λp) = λE[⟨p,Xi⟩] = λgi(p).
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Thus, gi is subadditive and positively homogeneous.

Theorem 1.2.1 from source 6 states that any sublinear expectation can be represented as the supremum of
linear expectations. Applying this to the linear functionals p 7→ ⟨p,Xi⟩, we conclude:

gi(p) = E[⟨p,Xi⟩] = sup
θ∈Θi

⟨p, θ⟩.

From the representation:
gi(p) = sup

θ∈Θi

⟨p, θ⟩,

we deduce that for each fixed θ:
⟨θ, p⟩ ≤ gi(p) for all p ∈ Rd.

Thus,
Θi = {θ ∈ Rd : ⟨θ, p⟩ ≤ gi(p) for all p ∈ Rd}.

We can now check for the convexity, compactness and uniqueness properties.

Θi is defined by linear inequalities of the form ⟨θ, p⟩ ≤ gi(p). Each inequality defines a half-space, and the
intersection of half-spaces is convex. Therefore, Θi is convex.

Since gi is sublinear and finite for all p, it dominates ⟨p, θ⟩. This bounds the coordinates of θ, ensuring Θi is
bounded. Being closed (as an intersection of closed half-spaces), convex, and bounded in finite-dimensional
space, Θi is compact.

The set Θi is uniquely determined by gi because any other set producing the same support function gi must
coincide with Θi. This follows from the uniqueness of support functions for convex bodies.

Theorem 3.1
Let {X1, X2, . . . , Xn} be independent random vectors in L2(Ω;Rd) under Ê. Then we have:

1. Θi = {EP [Xi] : P ∈ P} for i ≤ n, where P is given in Theorem 2.1, and Θi is defined in (3.3).

2. For each P ∈ P and i ≤ n, EP [Xi | Fi−1] ∈ Θi, P -a.s., where Fi = σ(X1, . . . , Xi) for i ≥ 1 and
F0 = {∅,Ω}.

Proof (3.1.1)

Define
Θ̃i := {EP [Xi] : P ∈ P}.

Since P is convex, for any P1, P2 ∈ P and λ ∈ [0, 1]:

λEP1 [Xi] + (1 − λ)EP2 [Xi] = EλP1+(1−λ)P2 [Xi],

where λP1 + (1 − λ)P2 ∈ P by convexity. Thus, Θ̃i is convex.

By assumption, P is weakly compact. The map P 7→ EP [Xi] is continuous with respect to the weak
convergence of probability measures. Hence, Θ̃i is the continuous image of a compact set P, thus Θ̃i is
compact.

Therefore, Θ̃i is a nonempty, convex, and compact subset of Rd.

Take any y ∈ Θ̃i. By definition, there exists Py ∈ P such that y = EPy [Xi].

For all p ∈ Rd:
⟨p, y⟩ = ⟨p,EPy [Xi]⟩ = EPy [⟨p,Xi⟩] ≤ sup

P ∈P
EP [⟨p,Xi⟩] = gi(p).

11



Since this holds for all p, we have y ∈ Θi. Thus, Θ̃i ⊆ Θi.

By definition:
gi(p) = sup

P ∈P
EP [⟨p,Xi⟩].

On the other hand, from the set Θ̃i:

sup
y∈Θ̃i

⟨p, y⟩ = sup
P ∈P

⟨p,EP [Xi]⟩ = sup
P ∈P

EP [⟨p,Xi⟩] = gi(p).

Thus, gi is precisely the support function of the compact convex set Θ̃i:

gi(p) = hΘ̃i
(p) := sup

y∈Θ̃i

⟨p, y⟩.

For a compact, convex subset C ⊂ Rd, the support function hC uniquely determines C. In particular, if
another set D satisfies hD = hC , then C = D.

Since Θi is defined by:
Θi = {y : ⟨p, y⟩ ≤ gi(p) ∀p ∈ Rd},

it is the maximal closed, convex set whose support function is gi.

We have identified one such set with support function gi, namely Θ̃i. By uniqueness, Θi = Θ̃i.

Proof (3.1.2)

Let P ∈ P and fix 1 ≤ i ≤ n.

Define Q := Q and

Qd := {(p1, . . . , pd) ∈ Rd : pj ∈ Q for each j = 1, . . . , d}.

Note that Qd is countable and dense in Rd.

From Proposition 2.3, for each p ∈ Qd,

⟨p,EP [Xi | Fi−1]⟩ = EP [⟨p,Xi⟩ | Fi−1] ≤ gi(p) P -a.s.

This means: for each p ∈ Qd, there exists a P -null set Np ⊂ Ω such that

⟨p,EP [Xi | Fi−1](ω)⟩ ≤ gi(p) ∀ω ∈ Ω \Np.

We can begin by constructing a universal null set for all rational directions

We have a family of null sets {Np : p ∈ Qd}. Since Qd is countable, write Qd = {p1, p2, p3, . . . }.

Consider

N :=
∞⋃

k=1
Npk

.

Since each Npk
is a P -null set, and a countable union of null sets has measure zero, we have:

P (N) = 0.

12



On Ω \N , for all p ∈ Qd simultaneously,

⟨p,EP [Xi | Fi−1](ω)⟩ ≤ gi(p).

Thus, we have enforced that one single null set N works for every rational vector p.

Now we extend the inequality in all real directions:

Let ω ∈ Ω \N . We know:

⟨p,EP [Xi | Fi−1](ω)⟩ ≤ gi(p) for all p ∈ Qd.

Take arbitrary p ∈ Rd. Since Qd is dense in Rd, there exists a sequence (p(m))∞
m=1 ⊂ Qd such that p(m) → p

as m → ∞.

For each m:

⟨p(m),EP [Xi | Fi−1](ω)⟩ ≤ gi(p(m)).

As m → ∞, the left side

⟨p(m),EP [Xi | Fi−1](ω)⟩ → ⟨p,EP [Xi | Fi−1](ω)⟩

by continuity of the inner product and the pointwise convergence p(m) → p.

To pass the limit on the right side:

gi(p) = sup
P ′∈P

EP ′ [⟨p,Xi⟩].

The function gi is convex (as a supremum of linear forms) and hence continuous from below on Rd. In
particular, since p(m) → p, we have:

lim
m→∞

gi(p(m)) = gi(p).

Combining these:

lim
m→∞

⟨p(m),EP [Xi | Fi−1](ω)⟩ = ⟨p,EP [Xi | Fi−1](ω)⟩,

and

lim
m→∞

gi(p(m)) = gi(p).

By taking limits, we preserve the inequality, hence:

⟨p,EP [Xi | Fi−1](ω)⟩ ≤ gi(p).

Since p ∈ Rd was arbitrary, we have shown:

⟨p,EP [Xi | Fi−1](ω)⟩ ≤ gi(p) ∀p ∈ Rd.

13



This holds for all ω ∈ Ω \N , and we recall P (N) = 0. By definition:

Θi = {y ∈ Rd : ⟨p, y⟩ ≤ gi(p) for all p ∈ Rd}.

For each ω ∈ Ω \N , we have established:

EP [Xi | Fi−1](ω) ∈ Θi.

Since P (N) = 0, we have:

EP [Xi | Fi−1] ∈ Θi P -a.s.

The penultimate result we will prove is the following:

Theorem 3.2
Let {Xi}n

i=1 be independent random vectors in L2(Ω;Rd) under the sublinear expectation Ê. Define

Θ :=
{

1
n

n∑
i=1

θi : θi ∈ Θi for each i = 1, . . . , n
}
,

where each Θi is defined as in (3.3). For x ∈ Rd, set

ρΘ(x) := inf
θ∈Θ

|x− θ|.

Define
σ2

n := sup
1≤i≤n

inf
θi∈Θi

Ê[|Xi − θi|2].

Then:

Ê

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ σ2

n

n
.

Proof (3.2)

By Theorem 2.1, there is a convex, weakly compact set P of probability measures such that for any random
variable Y ,

Ê[Y ] = sup
P ∈P

EP [Y ].

Apply this to Y = ρ2
Θ
( 1

n

∑n
i=1 Xi

)
:

Ê

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
= sup

P ∈P
EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
.

From Theorem 3.1(2), for each fixed P ∈ P and each i ≤ n:

EP [Xi|Fi−1] ∈ Θi P -a.s.

Since EP [Xi|Fi−1] is Fi−1-measurable and Θi-valued a.s., their average

1
n

n∑
i=1

EP [Xi|Fi−1]
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is also Θ-valued P -a.s. Thus there exists a random vector

θ(ω) := 1
n

n∑
i=1

EP [Xi|Fi−1](ω)

such that θ(ω) ∈ Θ for almost all ω.

By definition of ρΘ, for each ω ∈ Ω:

ρ2
Θ

(
1
n

n∑
i=1

Xi(ω)
)

= inf
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1
Xi(ω) − θ

∣∣∣∣∣
2

.

Since θ(ω) ∈ Θ a.s., we have pointwise a.s.:

ρ2
Θ

(
1
n

n∑
i=1

Xi(ω)
)

≤

∣∣∣∣∣ 1n
n∑

i=1
Xi(ω) − 1

n

n∑
i=1

EP [Xi|Fi−1](ω)
∣∣∣∣∣
2

.

Taking expectation under P :

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ EP

∣∣∣∣∣ 1n
n∑

i=1
(Xi − EP [Xi|Fi−1])

∣∣∣∣∣
2
 .

For any finite set of vectors y1, . . . , yn: ∣∣∣∣∣ 1n
n∑

i=1
yi

∣∣∣∣∣
2

≤ 1
n2

n∑
i=1

|yi|2.

Apply this with yi = Xi − EP [Xi|Fi−1]:

EP

∣∣∣∣∣ 1n
n∑

i=1
(Xi − EP [Xi|Fi−1])

∣∣∣∣∣
2
 ≤ 1

n2

n∑
i=1

EP [|Xi − EP [Xi|Fi−1]|2].

Thus:

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ 1
n2

n∑
i=1

EP [|Xi − EP [Xi|Fi−1]|2].

By the properties of conditional expectation in L2:

EP [|Xi − EP [Xi|Fi−1]|2] ≤ EP [|Xi − EP [Xi]|2].

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ 1
n2

n∑
i=1

EP [|Xi − EP [Xi]|2].

By Theorem 3.1(1), EP [Xi] ∈ Θi. Hence:

EP [|Xi − EP [Xi]|2] = inf
θi∈Θi

EP [|Xi − θi|2].

Thus:

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ 1
n2

n∑
i=1

inf
θi∈Θi

EP [|Xi − θi|2].
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Since Ê[Z] = supP ∈P EP [Z] and thus EP [Z] ≤ Ê[Z] for all P ∈ P, we have:

inf
θi∈Θi

EP [|Xi − θi|2] ≤ inf
θi∈Θi

Ê[|Xi − θi|2].

Therefore:

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ 1
n2

n∑
i=1

inf
θi∈Θi

Ê[|Xi − θi|2].

By definition:
σ2

n = sup
1≤i≤n

inf
θi∈Θi

Ê[|Xi − θi|2].

Since it is a supremum, for each i:
inf

θi∈Θi

Ê[|Xi − θi|2] ≤ σ2
n.

Hence:

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ 1
n2

n∑
i=1

σ2
n = σ2

n

n
.

Since the inequality holds for all P ∈ P, taking supremum over P :

sup
P ∈P

EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ σ2

n

n
.

Since the left-hand side supremum is Ê:

Ê

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
= sup

P ∈P
EP

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ σ2

n

n
.

Theorem 3.4
Let {Xi}n

i=1 be independent random vectors in L2(Ω;Rd) under Ê.

Set L2(Ω; Θ) = {ξ ∈ L2(Ω;Rd) : ξ(ω) ∈ Θ for ω ∈ Ω}, where Θ is defined in Theorem 3.2.

Then:

inf
ξ∈L2(Ω;Θ)

Ê

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 ≤ σ2

n

n
.

Proof (3.4)

Sion’s Minimax Theorem

Let P be the given weakly compact, convex set of probability measures. By definition, for any bounded con-
tinuous function f , the map P 7→ EP [f ] is continuous under the topology of weak convergence of measures.
Since each Xi ∈ L2(Ω;Rd), the random variables and their squares are integrable, and standard density argu-
ments ensure we can approximate

∣∣ 1
n

∑
i Xi − ξ

∣∣2 by bounded continuous functions in probability, preserving
continuity under weak convergence. Define Φ : P × L2(Ω; Θ) → R by

Φ(P, ξ) := EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 .

Let’s look at the properties of Φ
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1. For fixed ξ, the map P 7→ Φ(P, ξ) is linear in P . Since EP is linear in P , for Pλ = λP1 + (1 − λ)P2,

Φ(Pλ, ξ) = EPλ

[
|Z − ξ|2

]
= λEP1 [|Z − ξ|2] + (1 − λ)EP2 [|Z − ξ|2].

Thus, Φ(P, ξ) is affine in P , and since P is convex, supP ∈P Φ(P, ξ) is well-defined.

2. For fixed P , the map ξ 7→ Φ(P, ξ) is strictly convex. Since

Φ(P, ξ) = EP

[
|Z − ξ|2

]
, Z := 1

n

n∑
i=1

Xi,

the L2-norm ensures strict convexity. For ξ1, ξ2 ∈ L2(Ω; Θ) and λ ∈ [0, 1],

Φ(P, λξ1 + (1 − λ)ξ2) ≤ λΦ(P, ξ1) + (1 − λ)Φ(P, ξ2),

with equality only if ξ1 = ξ2 a.s.

• Φ is convex in ξ for each fixed P .

• Φ is affine (hence both convex and concave) in P for each fixed ξ.

• P is compact in the weak topology.

• L2(Ω; Θ) is convex.

• Φ is upper semicontinuous in the P -variable under the weak topology and convex in the ξ-variable.

By Sion’s minimax theorem, this ensures:

inf
ξ∈L2(Ω;Θ)

sup
P ∈P

Φ(P, ξ) = sup
P ∈P

inf
ξ∈L2(Ω;Θ)

Φ(P, ξ).

Approximation in L2(Ω; Θ)

Assume we have a random vector

ζP (ω) := 1
n

n∑
i=1

EP [Xi|Fi−1](ω),

with ζP (ω) ∈ Θ a.s. and ζP ∈ L2(Ω;Rd).

We want to approximate ζP in L2(P )-norm by a sequence {ξk} ⊂ L2(Ω; Θ) with ξk(ω) ∈ Θ a.s.

Since Θ is compact in Rd, for any δ > 0, there exists a finite δ-net {θj}m
j=1 ⊂ Θ such that

Θ ⊂
m⋃

j=1
B(θj , δ),

where B(θj , δ) denotes the ball of radius δ around θj .

For almost every ω, ζP (ω) ∈ Θ. Thus, there exists at least one j(ω) for which ζP (ω) ∈ B(θj(ω), δ). Set

ξδ(ω) := θj(ω).

Then ξδ(ω) ∈ Θ a.s., so ξδ ∈ L2(Ω; Θ) (it is bounded since Θ is compact, hence ξδ ∈ L2(Ω;Rd)).

For all ω,
|ζP (ω) − ξδ(ω)| ≤ δ.

Therefore,
EP [|ζP − ξδ|2] ≤ δ2.
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By choosing δ = ε for any ε > 0, we get a sequence ξk := ξ1/k that converges to ζP in L2(P )-norm:

lim
k→∞

EP [|ζP − ξ1/k|2] = 0.

Now, we can prove the theorem.

From above, we have

inf
ξ∈L2(Ω;Θ)

E

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 = inf

ξ∈L2(Ω;Θ)
sup
P ∈P

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 .

By the minimax equality:

inf
ξ∈L2(Ω;Θ)

sup
P ∈P

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 = sup

P ∈P
inf

ξ∈L2(Ω;Θ)
EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 .

Now, we construct the approximation using conditional expectations:

For each fixed P , consider:

1
n

n∑
i=1

EP [Xi | Fi−1] ∈ Θ P -a.s.

By the L2(Ω; Θ)-approximation argument, we have a sequence {ξk} ⊂ L2(Ω; Θ) such that:

lim
k→∞

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξk

∣∣∣∣∣
2
 = EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − 1

n

n∑
i=1

EP [Xi | Fi−1]
∣∣∣∣∣
2
 .

Thus:

inf
ξ∈L2(Ω;Θ)

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 ≤ EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − 1

n

n∑
i=1

EP [Xi | Fi−1]
∣∣∣∣∣
2
 .

From Theorem 3.2, we know:

E

∣∣∣∣∣ 1n
n∑

i=1
Xi − 1

n

n∑
i=1

EP [Xi | Fi−1]
∣∣∣∣∣
2
 ≤ σ̄2

n

n
.

Since EP [Z] ≤ E[Z] for all P and random variables Z, we have:

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − 1

n

n∑
i=1

EP [Xi | Fi−1]
∣∣∣∣∣
2
 ≤ σ̄2

n

n
.

Therefore:
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inf
ξ∈L2(Ω;Θ)

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 ≤ σ̄2

n

n
.

Taking supremum over P :

sup
P ∈P

inf
ξ∈L2(Ω;Θ)

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 ≤ σ̄2

n

n
.

By the minimax equality:

inf
ξ∈L2(Ω;Θ)

sup
P ∈P

EP

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 = sup

P ∈P
inf

ξ
EP [. . .] ≤ σ̄2

n

n
.

inf
ξ∈L2(Ω;Θ)

E

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 = inf

ξ∈L2(Ω;Θ)
sup
P ∈P

EP [. . .].

Hence:

inf
ξ∈L2(Ω;Θ)

E

∣∣∣∣∣ 1n
n∑

i=1
Xi − ξ

∣∣∣∣∣
2
 ≤ σ̄2

n

n
.

Conclusion & Extension
All in all, we investigated the behavior of independent random vectors under a sublinear expectation frame-
work, where uncertainty is modeled by a convex and weakly compact family of probability measures, denoted
as P .

We began by showing that each sublinear expectation Ê can be represented as a supremum over linear
expectations EP for P ∈ P . Using this representation, we identified and characterized the sets

Θi = {EP [Xi] : P ∈ P}.

These sets Θi, derived from the distributional uncertainty, uniquely determine the possible expectations of
each Xi. Once the sets Θi were established as convex, compact subsets of Rd, we combined them to define:

Θ :=
{

1
n

n∑
i=1

θi : θi ∈ Θi

}
.

Then, we introduced a distance ρΘ(x) to measure how far a point x lies from Θ, defined as:

ρΘ(x) := inf
θ∈Θ

|x− θ|.

Using conditional expectations under measures in P and the properties of sublinear expectations, we derived
the inequality:
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Ê

[
ρ2

Θ

(
1
n

n∑
i=1

Xi

)]
≤ σ̄2

n

n
,

where:

σ̄2
n = sup

1≤i≤n
inf

θi∈Θi

Ê
[
|Xi − θi|2

]
.

Ultimately, by applying Sion’s minimax theorem and an L2(Ω; Θ)-approximation argument, we established
a minimax equivalence that characterizes the least possible “variance” of the sample mean with respect to
approximations inside Θ. This leads to a clean minimax expression for the variance bound.

A possible natural extension is to examine sequences {Xi} of independent random vectors under sublinear
expectations as n → ∞. One might investigate laws of large numbers and central limit theorems in this
setting, exploring the asymptotic behavior of 1

n

∑n
i=1 Xi.
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