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Introduction

Classical inequalities involving sample means, such as those related to the law of large numbers or central
limit theorems, are well-studied under linear expectations. However, in settings involving uncertainty and
model ambiguity, the assumption of linearity is too restrictive. This has motivated a growing interest in
sublinear expectations, which allow for a broader class of measures and can better capture uncertainty.

A key development in this area is the representation of a sublinear expectation E as the supremum over a
convex, weakly compact family of probability measures P. In this framework, the distribution of a random
vector X under E corresponds to a range of possible linear expectations { Ep[X] : P € P}, forming a convex
and compact subset of R%. By applying the separation theorem, each sublinear expectation induces a unique
convex, compact set ©; C R? such that

0, = {Ep[X,]: P € P}.

In this paper[5], we consider independent R%-valued random vectors { X;}”™_; under a regular sublinear expec-
tation. Our first main contribution is a straightforward argument—avoiding any polytope assumptions—to
show that the set ©; fully characterizes the expectations of each X;. Building on this, we establish inequalities

involving the sample mean % Z?:l X;. In particular, defining

1 n
G{n;m:@;e@i}

and a suitable “distance”

po(z) = inf o -0,

we obtain an inequality of the form

where

—2 . . 2
= f E)X; — 0.
on = sup Inf [1X: = 617

Further application of Sion’s minimax theorem and Lusin’s theorem yields a minimax characterization of
the infimal variance bound over random vectors ¢ taking values in ©.

Preliminary Results

Definition of Sublinear Expectation
Below are the key properties defining a regular sublinear expectation E:H-—>sRonH= Cb.Lip(Q).

1. Monotonicity: If X (w) > Y (w) for all w, then E[X] > E[Y].
If one function is always greater than another, its expected value should be no smaller.

2. Constant Preserving: For any constant ¢, E[c] = c.
A sure payoff equals its own expectation.



3. Subadditivity: For all X, Y, E[X +Y] < E[X] + E[Y].
The expectation is “conservative”: combining risks does not reduce the total risk below the sum of
individual parts.

4. Positive Homogeneity: For A > 0, E[]AX] = AE[X].
Scaling a variable by a nonnegative factor scales its expectation by the same amount.

5. Regularity: If X, | 0 pointwise, then E[Xn] 10
As a sequence of random variables decreases to zero, their expectations also decrease to zero, ensuring
a form of continuity.

The first preliminary theorem we establish is the following:

Theorem 2.1

There exists a convex and weakly compact set of probability measures P on (£2, B(€2)) such that:

IE[X] = Jsgu%))]Ep[X], for X € H,
€

where B(2) is the Borel o-field.

They do not present a proof for it but claim it follows naturally from sources 1 and 4. It was initially not
intuitive but this is how we reconstructed it.

Proof(2.1)

We begin with E:H >R having the sublinear properties outlined above. Our goal is to write E [X] as
sup;, L[ X], where each L is linear and satisfies L[X] < E[X] for all X € H. To achieve this, we use a version
of the Hahn—Banach theorem adapted for sublinear dominance:

Let p: V. — R be a sublinear functional on a real vector space V. Suppose W C V is a linear subspace
and f: W — R is a linear functional with f(z) < p(z) for all x € W. Then there exists a linear extension
F:V — Rof f such that F(z) < p(x) for all z € V.

Apply this lemma with p = E and start from simple linear functionals defined on small subspaces (e.g.,
just constants). By iterating Zorn’s lemma and extending step by step, we construct a family L of linear
functionals L : H — R such that each L is positive (due to monotonicity preservation) and dominated by E:

LIX] < E[X], VX € H.
Moreover, this construction guarantees

E[X] = ilélzL[X], VX € H.

Each L € L is linear, positive, and satisfies a continuity-from-above condition inherited from the regularity of

E. By the Daniell-Stone representation theorem, there exists a unique probability measure Py, on (£, B(£2))
such that

LIX]=FEp, [X] = / X(w)Pp(dw), VX € H.
Q
Hence each L € L corresponds to a probability measure Py,. Set P := {Pp, : L € L}. Then we have

E[X] = sup Ep|X].
PeP
If P, P, € P, then for any o € [0, 1], aP; + (1 — a) P, also induces a linear functional X — aEp, [X] + (1 —
a)Ep,[X] which is still < E[X]. Thus aP; 4+ (1 — a)P; € P, showing P is convex. To show P is weakly
compact, we first prove tightness. By the structure of EA?, for any € > 0, we can find a compact set K. C )
such that
P(K)>1—¢ VYPeP.



This is because if mass escaped arbitrarily, it would contradict the regularity and monotonicity conditions on
E. Thus P is a tight family of probability measures. By Prokhorov’s theorem, a tight family of probability
measures on a Polish space (and €2, being complete and separable, is Polish) is relatively weakly compact.
Hence every sequence in P has a weakly convergent subsequence. Let (P,),>1 be a sequence in P that
converges weakly to some probability measure P,. For each X € H, since Ep_ [X] < E [X] and H consists of
bounded continuous functions, weak convergence yields Ep, [X] — Ep, [X]. By taking limits and using that
E [X] is the supremum over all P-expectations, we get:

Ep [X] < E[X], VX € H.

This shows P, also induces a linear functional dominated by E. By the construction of P, such a limit
measure must also lie in P. Thus, P is not only relatively weakly compact but also closed under weak limits,
ensuring P is weakly compact.

Now we need to set up other important properties of this space and the expectations.

Construction of L,(Q2)-Spaces
For each fixed p > 1, define a norm on H by

N 1/p
IXl, = (E0x17) 7, X en.

Since K is monotone and positively homogeneous, and since I@HX |P] is finite for all X € H (bounded and
Lipschitz implies boundedness of X, ensuring finiteness of E[|X|?] for every p), || - ||, is a well-defined norm
on H.

By taking the completion of H with respect to the || - ||,-norm, we obtain a Banach space L,(2). Elements
of L, () are equivalence classes of Cauchy sequences in H under the || - ||,-norm. Formally,

Holder’s inequality in this sublinear context ensures that if p > 1, then L,(€2) continuously embeds into
L1(Q). In other words, for all p > 1,

Ly(Q) C Ly (Q).

This embedding is justified by an inequality of the form:

N A » 1/p /. q 1/q
Blxv] < (Bxpr) © (Bvie)
with % + % = 1, showing that any p-integrable random variable is also 1-integrable.

Extension of E to L;(Q)

Since # is dense in Ly (€2) and E is initially defined on 7, we can extend I to all of L;(Q). By the completion
process, every X € L1(Q) is the limit of a sequence (X,,)52; C H such that ||X,, — X||1 — 0. Define:

E[X] := lim E[X,].

n— oo

This limit is well-defined and does not depend on the choice of the approximating sequence because if (Y7,)
is another sequence with Y,, — X in L1(f2), then || X, — Y, |1 — 0, and hence E[|X,, — Y,|] — 0. By

A

monotonicity and subadditivity, E[X,,] — E[Y,,] — 0, showing consistency.



In addition, E is still a regular sublinear expectation on L;(2). Regularity, monotonicity, and the other
properties extend to this bigger space since limits are taken in the || - ||;-norm.

Inclusion of Cp(Q) in L1(9)

The space Cp(€2) denotes all bounded and continuous functions 2 — R. By the Stone-Weierstrass theorem
(or related approximation theorems), for any bounded continuous f : 2 — R and for any € > 0, there exists a
sequence of functions in H = C’; 11O(Q) that converge uniformly to f. Uniform convergence plus boundedness
ensure convergence in the | - ||;-norm because:

. /T
17~ gl = (B0~ all) " <EDIS - gll] = If gl

for bounded functions f,g. Thus f € L1(€). This shows that:

Cp(Q2) C L1(Q).
Since H = CZI;iP(Q) C Cp(92), we also have H C Lq(£2).

Random Vectors in L,(;R?)

A d-dimensional random vector X = (X1, ..., X ) is said to be in L,(Q;R?) if and only if each X; € L,(9).
This means:

E[|X;[P] < 0o foralli=1,...,d.

We can define a norm on L, (2; R?) by:

d 1/p
11l := (ZJE[IXiIP}> .

This makes L, (; R?) a Banach space and again, since p > 1, we have:

Ly(RY) C Ly (4 RY).

~

Distribution Functionals Under E
Given a random vector X € Ly(Q;R?), define its distribution under E as a functional:
FY:CPPRY R, Flg] = Elg(X)].

Here, ¢ : R? — R is bounded and Lipschitz. Such ¢ are chosen to ensure that ¢(X) € Li().

Indepencence of Random Vectors

Although it is not necessarily a result, the definition of independent random vectors in a sublinear setting
incredibly interesting. As such, we will walk through components of the definition.



Definition

Let {X;}72, C L'(Q;R?), where each X; = (X/,..., X{) is a d-dimensional random vector with components
X7 e LY(Q) (i.e., E[|X]]] < oo for all j).

For infinite sequences, the sequence {X;}22, is called independent if for all ¢ > 1,

E[@/J(Xl, . .,Xi,XiJrl)] = E[]E[iﬁ(l‘l, . .,"Ei,X¢+1)}($1, ey Xy = (Xl,. . ,)(Z))]7

for every test function 1 € Cj.Lip(R%(+D).
Similarly, for a finite sequence {X;}" ; C L'(Q;R?), where n > 1, the sequence is independent if for all
1<i<n-—1,

E[w(Xla .. ;XiaXi-l—l)] = E[]EW(%, <oy Ty Xi-‘rl)](xla ceey Ty = (X17 .. aXl))]7
for every test function ¥ € Cj.Lip(R%+1),

Interpretation of the Independence Property

Let (a1, ...,2;, x;+1) represent a function of the joint random vector (X7, ..., X;, X;11). The independence
condition states that the expectation of ¥ under E can be decomposed as:

E[¢(X1, . .,Xi7Xi+1):| = E[]E[’l/)(l’l, . ';xi;XinLl)le; B (Xl, . ;Xz))]

1. Inner Expectation:
o E[(zy,...,24 X;41)]: This is the expectation of 9, treating Xi,...,X; as fixed parameters. It

evaluates the influence of X; 1 on ¢, conditional on X7,...,Xj;.
2. Outer Expectation:
o E[-]: This computes the expectation over the randomness of Xy, ..., X;, which is akin to averaging

over all possible realizations of the preceding random vectors.

In classical probability theory, independence is defined using conditional expectations:

Elp(Xy,..., Xi, Xip1)] = E[E[Y (X1, ..., X5, Xig1)|Xq, ..., XG].

In the sublinear expectation framework, we replace E with E”, which may not be additive. The generalization
still preserves the notion of “independence” by making sure that X;;;’s distribution is unaffected by the
earlier sequence (X1,...,X;).

Perhaps the neatest part of the result, in our estimation at least, is the recursive nature of the definition.
(X1,...,X;) are independent if X, is independent of (Xi,...,X;). This means that the sequence can be
studied incrementally (LLN and CLT)!

The final preliminary result we establish is the following proposition:

Proposition 2.3

Let {X;}", be independent random vectors in L?(£2; R?) under E. Then, for cach P € P and ¢ € CLip(RY),
we have

EP[¢(X;) | Fio1] <E[@(X;)], P-as., for i <n,

where P is given in Theorem 2.1, CLip(Rd) denotes the space of Lipschitz functions on R, F; = o( X1, ..., X;)
for i > 1, and Fy = {0, Q}.



Again, there is no proof presented for this in the paper apart from a reference to a paper but we have
reconstructed it below using some machinary from source 6.

Proof (2.3)

Define the event:

B = {Ep[6(X:) | Fia] > Eo(X)]}

Since Ep [¢(X;) | Fi—1] is F;_1-measurable, we know B € F;_;. We aim to show P(B) =0 for each P € P.
Suppose, for the sake of contradiction, that there exists some P € P with P(B) > 0.

Because B € F;_1, there exists a Borel set F' C R4GE=1) such that:

BQ{(Xlw"infl)eF}v

and hence:

P(X1,...,X;.1 € F) > P(B) > 0.
On the event {X1,...,X,_1 € F}, we have:

A

Ep[p(Xi) | X1,..., Xia] > E[o(X5)] .

The set F is measurable, but the indicator function Ip(x1,...,2;-1) is generally not Lipschitz. Since our
functions need to be in CYP(R?) or at least constructed from such, we approximate I using bounded
Lipschitz functions. This is a standard functional analytic argument:

By Urysohn’s lemma and standard approximation arguments, or by Tietze’s extension theorem, we can
construct a sequence of functions (¢x)x>1 C C¥P (R 1) such that:

0 < ¢p(z1,...,zi—1) <1 forall k,

and:

ok(x1,. . xi—1) L Ip(x1, ..., x4—1) pointwise as k — oo.
This approximation ensures that we can uniformly approximate the indicator of F' by bounded Lipschitz
functions from above.

We know that on F, the conditional expectation under P of ¢(X;) is strictly greater than E[¢(X;)]. To
exploit this, we want to link this inequality to a contradiction involving the definition of F.

Let us define a suitable “centering” that will help create a contradiction. Since ¢ is bounded Lipschitz,
E[¢(X;)] is well-defined and finite. Let:

m = E[¢(X;)).

Consider the shifted random variable ¢(X;) —m. Its E-expectation is at most zero by definition (since Eis
sublinear and E[¢(X;)] = m, we have E[¢(X;) —m] < m—m = 0). Actually, since E[$(X;)] = m, there exists
some P* € P for which Ep«[¢(X;)] approximates m from below or equals it—this ensures E[¢(X;) —m] < 0.

Now define, for each integer N > 1, a truncated function:



fn(@i) = ((¢(z:) —m) AN)V (=N).

This ensures fy : R? — R is Lipschitz and bounded by N. As N — oo, fx(x;) — ¢(x;) — m pointwise.
Also, since ¢(x;) is bounded, choose N large enough so that fy(z;) = ¢(z;) — m for all z; (no truncation
needed if N exceeds the essential bound of ¢). Thus for sufficiently large N:

We now define the key test functions:

YN (@1, T, ) = O, i) - (@)

Each 1y, n is the product of two bounded Lipschitz functions, hence vy, y € CHP(R).

By definition:
Ep[te,n(X1,...,Xs)] = Ep[én(X1,..., Xiz1) - fn(X5)].

On the event {X1,...,X;_1 € F}, we have
Ep[d)(Xz) | )(17 e ,Xifl] >m = E[(f)(Xz)],

and hence
Ep[fN(Xl) | Xl, .. .,Xifl] = ]Ep[(b(Xz) —-m | Xl, Ce ,Xi,1] >0,

(for large enough N, fn(X;) = ¢(X;) — m exactly).

Since ¢y | Ir, by the monotone convergence theorem (applied under P), we have

kli_g)lo Ep[pr(X1,. .., Xi—1) fN(Xi)] = Ep[Ip(Xy, ..., Xi—1) fn(X3)].

Moreover, on {Xy,...,X;—1 € F}, Ip(X1,...,X;-1) =1, so

Ep[Ip(X1,.... Xio)fn(X)] = Ep(Bp[Ip(X1, ..., Xio))fn(Xs) | X1,. .., Xi_1)).

Since I is F;_1-measurable,

]EP[IF(Xl,. .. aXi—l)fN(Xi) | Xl,. .. aXi—l] = IF(Xl, . ,Xi_l)]Ep[fN(Xi) | Xl, . aXi—l]-

On F, this is strictly positive. Thus
Ep[Ip(Xi,...,Xi1)fn(X5)] >0,

and hence for sufficiently large k,
EP[wk,N(Xla Ce 7Xz)] > 0.

Now, recall that E is sublinear and

E[X] = sup Eg[X].
QeP
In particular, for any X, Ep[X] [X].

<k
Apply this to X = ¢, n(X1,..., X):

Ep[trn(X1,. .., X)) < B n(X1, ..., Xi)].

©



We also know from the independence property under E that since YN factors into a function of
(X1,...,X;—1) times a function of X;, we have

Bl n (X1, ..o, X)) = Blog(X1,. .., Xio1) v (X))

By the definition of independence (and con51der1ng that fn(Xi;) = #(X;) —m), it can be shown that
Blop(X1,. .., Xi_1)fn(X;)] factors into B¢ (X1, . .., X;_1)]E[fn (X:)] or is at most B¢ (X1, ..., X;_1)] max(E[fx (X;)],0)
due to sublinearity and the “independence” structure.

Since ¢, is bounded and approximates an indicator, E[¢k(X1,...,Xi_1)] is finite and converges to
Elp(X1,...,X;-1)]

Crucially, because E[¢(Xl)] = m, we have I@[d)( i) —m] < 0. By the boundedness of ¢, as N grows large
enough so that no truncation occurs, E[fn (X;)] = E[¢(X;) —m] < 0.

Thus, . R
Eloe, N (X1, Xi)] S E[gp(Xa, ..., X;21)] - 0=0.

This implies
EP[¢kaN(X17 cee 7X2)] S 0.

But previously, we derived that for large enough &, IV,

Ep[(/)k’N(Xl, . 7Xz)] > 0.

This is a direct contradiction. Since P € P was arbitrary, we conclude that for every P € P,

Epl¢(X,) | Fia] <E[p(X;)], P-as.

Main Results

There are three major results established in this paper. Theorem 3.1 identifies the set ©; as exactly the
collection of all possible expectations Ep[X;] for P € P, and shows that the conditional expectations Ep[X] |
Fi—1] also lie in ©; almost surely. Theorem 3.2 bounds the “variance” of the sample mean under sublinear

expectations by % where 2 is a measure of dispersion controlled by the sets ©;. Finally, theorem 3.4 ,
using Sion’s minimax theorem and L?(Q; ©)-approximations, establishes that the order of taking an infimum
over ¢ and a supremum over P can be interchanged, which gives us a minimax characterization of the best
achievable variance bound within ©.

Before outlining their proofs in more detail, we will first establish some machinary to assist us.

Let {X;}", be independent random vectors in L?(€2; R?) under E. For each i < n, define g; : R — R as
follows:

Let
9i(p) =E[(p, X;)], peR™

For p1,ps € R%:
gi(p1 + p2) = E[{p1 + p2, X3)] = E[(p1, Xi) + (p2, Xi)].

By the subadditivity of E:
9i(p1 + p2) < E[(p1, X3)] + E[{p2, Xi)] = ¢:(p1) + g:(p2).

For A > 0 and p € R%:
9i(Ap) = E[(Ap, X;)] = E[Xp, Xi)].

By positive homogeneity of E:
9i(Ap) = AE[(p, Xi)] = Agi(p).

10



Thus, g; is subadditive and positively homogeneous.

Theorem 1.2.1 from source 6 states that any sublinear expectation can be represented as the supremum of
linear expectations. Applying this to the linear functionals p — (p, X;), we conclude:

9i(p) = E[(p, Xi)] = sup (p, ).

From the representation:

gl(p) = sup <p7 9)7
0cO;

we deduce that for each fixed 6:
(0,p) < gi(p) forall p e R™.

Thus,
0, = {0 € R (0,p) < gi(p) for all p € R},
We can now check for the convexity, compactness and uniqueness properties.

0; is defined by linear inequalities of the form (0, p) < g;(p). Each inequality defines a half-space, and the
intersection of half-spaces is convex. Therefore, ©; is convex.

Since g; is sublinear and finite for all p, it dominates (p,#). This bounds the coordinates of 6, ensuring ©; is
bounded. Being closed (as an intersection of closed half-spaces), convex, and bounded in finite-dimensional
space, ©; is compact.

The set ©; is uniquely determined by g; because any other set producing the same support function g; must
coincide with ©;. This follows from the uniqueness of support functions for convex bodies.

Theorem 3.1
Let {X1, Xo,..., X,,} be independent random vectors in L?(Q; R?) under E. Then we have:

1. ©;, = {Ep[X;] : P € P} for i < n, where P is given in Theorem 2.1, and ©; is defined in (3.3).

2. For each P € P and i < n, Ep[X; | Fi—1] € ©;, P-as., where F; = o(X3,...,X;) for i > 1 and

Fo ={0,Q}.
Proof (3.1.1)
Define ~
0, := {]EP[XZ] :Pe P}

Since P is convex, for any P, P, € P and A € [0, 1]:

AEp, [Xi] + (1 = MEp,[Xi] = Exp, +1-x)p, [Xi],

where APy + (1 — A\) P2 € P by convexity. Thus, (:)Z is convex.

By assumption, P is weakly compact. The map P Ep[X;] is continuous with respect to the weak
convergence of probability measures. Hence, ©; is the continuous image of a compact set P, thus ©; is
compact.

Therefore, ©; is a nonempty, convex, and compact subset of R?.
Take any y € ©;. By definition, there exists P, € P such that y = Ep, [ X;].
For all p € R%:

(p,y) = (p, Ep, [Xi]) = Ep, [(p, Xi)] < sup Ep[{p, Xi)] = gi(p)-

11



Since this holds for all p, we have y € ©;. Thus, 0, C ©,.
By definition:

gi(p) = sup Ep[(p, X;)].
Pep

On the other hand, from the set ©;:

sup (p,y) = sup (p, Ep[X;]) = sup Ep[(p, X;)] = gi(p)-
yed, PeP PeP

Thus, g; is precisely the support function of the compact convex set ©;:

9i(p) = he, (p) = sup (p,y).

ISICH

For a compact, convex subset C' C R?, the support function hc uniquely determines C. In particular, if
another set D satisfies hp = h¢e, then C' = D.

Since ©; is defined by:
0 ={y: (p,y) < gi(p) ¥p € RY},

it is the maximal closed, convex set whose support function is g;.

We have identified one such set with support function g;, namely ©;. By uniqueness, ©; = ©;.

Proof (3.1.2)
Let Pe Pand fix1<i<n.
Define @ := @ and

Qa:={(p1,...,pa) € R? :pj € Q foreach j=1,...,d}.
Note that Qg is countable and dense in R

From Proposition 2.3, for each p € Qg,

(0, Ep[X; | Fic1l) = Ep[(p, Xi) | Fiz1] < gi(p) P-as.

This means: for each p € Qq, there exists a P-null set N, C {2 such that

0, Ep[X; | Fic1](w)) < gi(p) Yw € Q\ N,.

We can begin by constructing a universal null set for all rational directions
We have a family of null sets {N,, : p € Qq}. Since Qg is countable, write Qq = {p1,p2,p3,... }-

Consider

(o)
N =[] Ny,
k=1

Since each Np, is a P-null set, and a countable union of null sets has measure zero, we have:

P(N) = 0.

12



On Q\ N, for all p € Qg simultaneously,

(0, Ep[Xi | Fica](w)) < gi(p)-
Thus, we have enforced that one single null set IV works for every rational vector p.
Now we extend the inequality in all real directions:
Let w € Q\ N. We know:
(P, Ep[Xi | Fit] @) < gilp) for all p € Qu.

Take arbitrary p € R?. Since Qg is dense in R%, there exists a sequence (p(m));’f:1 C Qg such that p(™ — p
as m — 00.

For each m:

P Ep[X; | Fimal(w)) < gi(p™).
As m — o0, the left side
(p"™, Ep[X; | Fia](w)) = (0, Ep[X; | Fia](w))

by continuity of the inner product and the pointwise convergence p(™ — p.

To pass the limit on the right side:

gi(p) = sup Ep/[(p, X;)].
PIEP

The function g; is convex (as a supremum of linear forms) and hence continuous from below on R?. In
particular, since p(™ — p, we have:

im g (p™) = g;
Jimg;(p"™) = gi(p)-

Combining these:

lim (p™ Ep[X; | Fima)(w)) = (0, Ep[X; | Fima](w)),

m—r oo

and

lim g;(p™) = g;(p).

m—o0

By taking limits, we preserve the inequality, hence:

(0, Ep[X; | Fim1](w)) < gs(p).

Since p € R? was arbitrary, we have shown:

(0, Ep[X; | Fimal(w)) < gi(p) Vp e R

13



This holds for all w € Q\ N, and we recall P(N) = 0. By definition:

0,={ye€ RY: (p,y) < g;(p) for all p € Rd}.

For each w € Q\ N, we have established:

EP[Xl | .7:1'_1]((,0) S 91

Since P(N) = 0, we have:

]EP[X,‘ ‘ .7:;‘,1] €06, P-as.
The penultimate result we will prove is the following:

Theorem 3.2

Let {X;}"_, be independent random vectors in L?(€2; R%) under the sublinear expectation E. Define

1 n
CRES - 9191 ®zf h‘:l,..., ,
{ng € or each 1 n}

where each ©; is defined as in (3.3). For x € R4, set

po(x) = 32& |z — 0.

Define .
72 .= sup inf E[X;—6;?.
1Sign9i€@i
Then:
Pe n @ = n’
Proof (3.2)

By Theorem 2.1, there is a convex, weakly compact set P of probability measures such that for any random
variable Y,

E[Y] = sup Ep[Y].

PepP
n
2
Pe n 4
=1

EP[Xz"Fz'—l] €0, P-as.

Apply this to Y = p3 (£ Y0, X;):

1TL
2
N X || =swpE

E
PeP

]
=
—

From Theorem 3.1(2), for each fixed P € P and each i < n:

Since Ep[X;|F;_1] is F;_1-measurable and ©;-valued a.s., their average

1 n
fE Ep[X;|F;_1]
n

i=1

14



is also ©-valued P-a.s. Thus there exists a random vector

O(w) = % Z Ep[Xi|F;-1](w)

i=1
such that (w) € © for almost all w.

By definition of pg, for each w € €

1 n
21-) X; = inf
(Z W) s

Since #(w) € © a.s., we have pointwise a.s.:

P (:LZXi(W)> <

Taking expectation under P:

nZX

2

0 i)~ > Bl Fit ]

i=1 i=1

2
Ep |p

1 n
<Ep ‘n Z(Xl — Ep[Xi|Fi_1])

i=1

For any finite set of vectors y1,...,yn:

1 |

= Y 2
_EZIy
i=1

2
1 n
< 3D Ep[IXi — Ep[Xi|Fima] )

i=1

1 n
EZX Ep[X,|Fi_1))

Thus:

1 n 1 n
e <n ZXN < 5 > EpllXi - BplXi|Fi ]
i=1

i=1
By the properties of conditional expectation in L?:

Ep[|X; — Ep[Xi|F;1])?] < Ep[|X: — Ep[Xi][?].

Ep

1O 1<
o (nle)] ;Z plIXi — Ep[Xi]?].
i=1 i=1
By Theorem 3.1(1), Ep[X;] € ©,. Hence:
Ep[|X; — Ep[Xi]]] = pnf Ep[lXi - 0;1%].

Thus:
Ep

1 < 1 &
2 [ = ) < ; - _0.12.
(33 )] < B3 g -

15



Since E[Z] = suppep Ep[Z] and thus Ep[Z] < E[Z] for all P € P, we have:
. 012 < A 0.2
9112& Ep[|Xi —6;°] < GJQ&EHXz 0:]°]

Therefore:

1< 1 < -
2 . 2
Po (n E Xz)] <3 2271 9,}2&E[‘Xi = 0:[7].

By definition: .
2 = sup inf E[|X; —6;]%].

1<i<n 0i€0;

Since it is a supremum, for each i:

Hence:

Since the inequality holds for all P € P, taking supremum over P:

1 ~ 0'2
2 E n
— Xi <7_
g (n =1 )]

sup Ep
PeP
Since the left-hand side supremum is E:

1n
2=y "X, || = E

E
Pep

1 & o2
213X, || <=,
a(iyx)] <

Theorem 3.4
Let {X;}", be independent random vectors in L2(€2; R%) under E.
Set L2(Q;0) = {¢ € L2(;RY) : £(w) € O for w € Q}, where O is defined in Theorem 3.2.

Then:
2

inf FE
€€L?(Q;0)

3

[
< —.
n

1 n
5;&75

Proof (3.4)
Sion’s Minimax Theorem

Let P be the given weakly compact, convex set of probability measures. By definition, for any bounded con-
tinuous function f, the map P — Ep[f] is continuous under the topology of weak convergence of measures.
Since each X; € L?(Q;R?), the random variables and their squares are integrable, and standard density argu-

ments ensure we can approximate |% Y Xi—¢& |2 by bounded continuous functions in probability, preserving
continuity under weak convergence. Define @ : P x L?(2;©0) — R by

2
o(P,¢) :=Ep

1 n
E;&—f

Let’s look at the properties of ®

16



1. For fixed &, the map P — ®(P,¢) is linear in P. Since Ep is linear in P, for Py = AP, 4+ (1 — \) P,
®(Px,6) =Ep, [|Z — €P] = AEp[|1Z — €] + (1 = MER,[|Z — €]

Thus, ®(P, &) is affine in P, and since P is convex, suppcp ®(P,§) is well-defined.
2. For fixed P, the map £ — ®(P,§) is strictly convex. Since

1
®(P.¢) =Ep[|2-¢P], Z:=— ZXi,

the L2-norm ensures strict convexity. For &;,& € L?(Q;0) and X € [0, 1],
(P, A+ (1= N)&2) S AR(P &) + (1 - N)@(P, &),

with equality only if & = & a.s.
e @ is convex in ¢ for each fixed P.
o & is affine (hence both convex and concave) in P for each fixed &.
e P is compact in the weak topology.
o L?(Q;0) is convex.
e & is upper semicontinuous in the P-variable under the weak topology and convex in the &-variable.

By Sion’s minimax theorem, this ensures:

inf  sup ®(P,§) = su inf ®(P¢).
fELZ(Q;e)PeFI)D (F.¢) PeII)DﬁeLZ(Q;e) ( )

Approximation in L?(Q;0)
Assume we have a random vector
1 n
Cp(w) =~ > Ep[Xi|Fial(w),
i=1
with (p(w) € © a.s. and (p € L2(;RY).
We want to approximate (p in L?(P)-norm by a sequence {£;} C L?(Q2; ©) with & (w) € O a.s.

Since © is compact in R?, for any § > 0, there exists a finite d-net {6; }71 C © such that
e c | B9,
j=1

where B(6;,0) denotes the ball of radius ¢ around 6.

For almost every w, (p(w) € ©. Thus, there exists at least one j(w) for which (p(w) € B(0;(w),
55(60) = Qj(w).

Then &5(w) € O as., so & € L%(Q;0) (it is bounded since © is compact, hence &5 € L2(Q; R?)).

J). Set

For all w,
[Cp(w) — & (W) < 0.

Therefore,
Ep[|Cp — &7 < 6°.

17



By choosing § = ¢ for any € > 0, we get a sequence & := {;; that converges to (p in L?(P)-norm:

Jim Ep[|Cp — & kl’] =

Now, we can prove the theorem.

From above, we have

inf  sup Ep
€€L2(9 ©) pep

£€L2 Q e) Z Xi =

2
1 n
ﬁ;&fs

By the minimax equality:

=sup inf Ep
Ppep £€L>(240)

2
1 n
5;&75

inf  sup X; —
§EL2(20) PEP | Z

Now, we construct the approximation using conditional expectations:

For each fixed P, consider:

1 n
EZEP[XZ | .7'—1‘_1] €O P-as.
i=1

By the L?(£2; ©)-approximation argument, we have a sequence {&,} C L%(£2;©) such that:

2
1 & 1 «
hm Ep ’ ZX =Ep E;Xi—E;EP[XH}—Fl]
Thus:
1 & 1 — ’
X; — <E — X;— = Ep[X; | Fi_
L E z | <& DREEIRAES

From Theorem 3.2, we know:

2

I 1< 2
E - Xi—— Ep|X; i— < =
n; n; p[Xi | Fil -
Since Ep[Z] < E[Z] for all P and random variables Z, we have:
n 2
E 1ZX772E [X; | Fiea <
P n v P i—1 = .

Therefore:

18



1< a2
inf. E — X, — <
€L?($;0) n ; i=¢ -n
Taking supremum over P:
1< o2
su inf E — X; — < B
PEI7)J ¢eL2(;0) P n ; ! - n

By the minimax equality:

S ‘3%

= sup irglep[. L] <

inf
£6L2(Q 0) PeP PeP

1 n
sup EP ‘E Xl‘—g
n
i=1

inf
€€L2(0;0)

= f sup E
= et s ErlL-

ZX€

Hence:

A
S ‘3ql\")

ZX

inf
€eL2(; e)

Conclusion & Extension

All in all, we investigated the behavior of independent random vectors under a sublinear expectation frame-
work, where uncertainty is modeled by a convex and weakly compact family of probability measures, denoted

as P.

We began by showing that each sublinear expectation E can be represented as a supremum over linear
expectations Ep for P € P. Using this representation, we identified and characterized the sets

©; ={Ep[Xi]: P € P}.

These sets ©;, derived from the distributional uncertainty, uniquely determine the possible expectations of
each X;. Once the sets ©; were established as convex, compact subsets of R?, we combined them to define:

1 n
:{n;@@le@l}

Then, we introduced a distance pg(z) to measure how far a point x lies from O, defined as:

po(x) = aig({) |z — 0.

Using conditional expectations under measures in P and the properties of sublinear expectations, we derived

the inequality:

19



where:

2= sup inf E [1X; — 0;°] -

1<i<n 9:€0;

Ultimately, by applying Sion’s minimax theorem and an L?(£; ©)-approximation argument, we established
a minimax equivalence that characterizes the least possible “variance” of the sample mean with respect to
approximations inside ©. This leads to a clean minimax expression for the variance bound.

A possible natural extension is to examine sequences {X;} of independent random vectors under sublinear
expectations as n — oco. One might investigate laws of large numbers and central limit theorems in this
setting, exploring the asymptotic behavior of % S X
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