
Singular Learning Theory: Generalization in Deep Networks

Nahom Seyoum

2025-05-02

1

Contents
Introduction 3

Bayesian learning in singular models and Watanabe’s equivalence theorem 3
Generalisation, training, and functional variance . 4
Cross-validation in the Bayesian posterior . 4
Birational invariants: the real log-canonical threshold . 5
Cross-validation mirrors generalisation through λ . 6
Sketch of the proof of Theorem 3 . 7

The Generic Singularity of Deep Networks 7
Empirical Estimation of λ via Tempered Posteriors . 8
λ, Flat Minima, and Generalization Error . 9

KL Risk for Linear Feed-Forward Networks 10
Resolving Singularities using Blow-ups . 11
Exact Learning Coefficients for Linear Networks . 11
Additive Rule for ReLU Networks . 12
Example Computation . 13
Impact on Learning Curves and Model Selection . 13

Conclusion 14

2

Introduction
Deep learning’s impressive empirical success(broadly conceived) across many domains has exposed an inad-
equacy in classical statistical learning theory. Traditional frameworks like the Fisher information, Laplace
approximations for marginal likelihood, and model selection criteria such as BIC, fundamentally presuppose
a well-behaved, locally regular relationship between model parameters and the probability distribution they
define. They assume the likelihood function is smooth and can be approximated by a quadratic surface
around its optima, characterized by a non-singular Hessian or Fisher information matrix.

Feed-forward neural networks, which is what deep learning is primarily predicated upon, routinely violate
these assumptions. The mapping from network weights to the input-output function is often highly non-
identifiable and redundant. That is to say, different parameter values can produce the exact same function,
leading to parameter spaces where the set of optimal solutions forms a complex, non-smooth structure
known as an analytic variety. At points within this variety corresponding to the true distribution, the
Fisher information matrix becomes singular (rank-deficient). This essentially makes standard quadratic
approximations invalid and classical complexity measures (think VC, Rademacher complexity, Littlestone
Dimension) like the number of parameters (d) misleading.

Singular Learning Theory (SLT), introduced by Sumio Watanabe, attempts to construct a mathematical
framework to address this challenge. By using tools from algebraic geometry, SLT replaces classical curvature-
based analyses with invariant measures derived from the singular geometry of the parameter-to-distribution
map.

Sumio Watanabe’s paper essentially lays out a theoretical framework, defining λ and proving its role in
Bayesian generalization error and model evidence asymptotics through relations like:

Bg(n) + Cv(n) = 2λ

n
+ o(n−1) (∗)

A decade later, Daniel Murfet et al. empirically validate SLT for deep networks, showing they are strictly
singular. They develop pretty creative practical methods to estimate λ from tempered posteriors and demon-
strate its correlation with generalization. The key insight is this an interpretation of “flat minimum” and
consequent architectural effects.

Finally, I look at a recent(2025) work by Miki Aoyagi where she completes the picture by providing exact,
closed-form computations of the learning coefficients (λ, θ) for linear and three-layer ReLU networks. The
work essentially confirms that λ decreases with network depth, and this is helpful in connecting singular
geometry to phenomena like double descent.

Bayesian learning in singular models and Watanabe’s equivalence
theorem
A lot of this framework happens in the Bayesian setting. This is not without reason. The setup provides a
way to quantify uncertainty over the parameters via the posterior distribution and implicitly handles model
complexity through the properties of the marginal likelihood (the denominator in Bayes’ theorem).

We can now move on to thinking about learning machines within this framework. A learning machine is
formally defined by a family of probability densities p(x | w) indexed by a parameter w that ranges in a
compact analytic set W ⊂ Rd. We assume that observed training samples X1, . . . , Xn and an independent
test point X are drawn from an unknown “true” distribution q(x)dx.

Given an inverse temperature 0 < β < ∞, which allows us to interpolate between uniform prior (β → 0)
and concentration at the maximum likelihood estimate (β → ∞), the posterior distribution πn,β(dw) on the
parameter space W is given by:

πn,β(dw) =
[∏n

i=1 p(Xi | w)β
]

φ(w) dw∫
W

[
∏n

i=1 p(Xi | u)β] φ(u) du
, φ is an analytic and positive prior density on W.

3

In the standard Bayesian setting, β = 1. The denominator in the posterior formula is the marginal likelihood
or model evidence, p(Dn|model) =

∫
W

∏n
i=1 p(Xi|u)βφ(u)du.

To find the Bayes predictive density for a new data point x. we just average the model’s prediction p(x|w)
over the posterior distribution:

p∗
n(x) =

∫
p(x | w) πn,β(dw).

The goal of learning, then becomes making p∗
n(x) a good approximation of the true distribution q(x).

Generalisation, training, and functional variance

We quantify performance using the log-loss function f(x, w) = − log p(x | w). The quality of the predictive
distribution p∗

n(x) on unseen data is measured by the Bayes generalisation loss (BgL), which is the expected
log-loss on a new test point X drawn from the true distribution q, averaged over the posterior πn,β : BgL(n) =
EX∼q[f(X, w)]πn,β

. I think about this as the average error we expect when using the learned model on new
data.

The Bayes training loss (BtL) is the average log-loss on the training data, again averaged over the posterior:
BtL(n) = 1

n

∑n
i=1 f(Xi, w)πn,β

. An intuition for this is that measures how well the model fits the data it
was trained on.

The difference between generalization and training loss, BgL(n) - BtL(n), is effectively overfitting.. Classical
methods estimate BgL(n) using BtL(n) plus a penalty, somewhat related to the model dimension. However,
they assume model regularity. Watanabe addresses this by considering the fluctuation of the loss across the
posterior. The amplitude of this fluctuation is measured by the functional variance V (n):

V (n) =
n∑

i=1

{
E[f(Xi, w)2]πn,β

−
(
E[f(Xi, w)]πn,β

)2
}

.

V (n) is how much the loss value for each training point varies when w is sampled from the posterior, summed
over all training points. It’s a measure of the uncertainty in the training loss prediction conferred by the
posterior distribution.

Watanabe defines the Widely Applicable Information Criterion (WAIC) as a potential estimator for the
generalization loss that works even for singular models:

WAIC(n) = BtL(n) − β

n
V (n).

This form resembles classical information criteria: a training error term (BtL) plus a complexity penalty
term (β/n)V (n). The penalty is based on the functional variance V (n), which intuitively measures model
flexibility with respect to the data distribution, rather than simply parameter count. Watanabe proves that
E[WAIC(n)] asymptotically estimates E[BgL(n)] up to o(n−1) terms, regardless of whether the model is
singular or regular.

Cross-validation in the Bayesian posterior

Cross-validation is probably the most popular measure of generalization error. Bayesian leave-one-out cross-
validation computes the predictive probability of each training point Xi when the model is trained on the
remaining n − 1 points Dn \ {Xi}. For each index i, let π

(i)
n,β be the posterior constructed from Dn \ {Xi},

and p
(i)
n (x) the corresponding predictive density. The leave-one-out cross-validation loss is:

CvL(n) = − 1
n

n∑
i=1

log p(i)
n (Xi).

4

Using importance sampling weighted by p(Xi|w)−β , the predictive probability of Xi given the other data
points Dn \ {Xi} is:

p(i)
n (Xi) = Ew[p(Xi | w)1−β]

Ew[p(Xi | w)−β] ,

where the expectations Ew[·] are taken with respect to the normalized density proportional to∏n
j=1 p(Xj |w)βφ(w). This leads to the form of CvL given in the draft:

CvL(n) = − 1
n

n∑
i=1

log Ew[p(Xi | w)1−β]
Ew[p(Xi | w)−β] .

We can compare CvL(n) and WAIC(n) asymptotically and Watanabe uses the functional-cumulant gener-
ating function:

F (α) = 1
n

n∑
i=1

logEw

[
e−αf(Xi,w)

]
,

The neat part is that the logarithm of an expectation logE[e−αY] has a Taylor expansion in α whose
coefficients are the cumulants of the random variable Y . For f(Xi, w) under the posterior, let κk(i) de-
note its k-th cumulant. Then logEw[e−αf(Xi,w)] =

∑∞
k=1

(−α)k

k! κk(i). F (α) = 1
n

∑n
i=1
∑∞

k=1
(−α)k

k! κk(i) =∑∞
k=1

(−α)k

k!
(1

n

∑n
i=1 κk(i)

)
. Let Yk(n) = 1

n

∑n
i=1 κk(i) be the empirical average of the k-th cumulant over

the training data. Y1(n) = 1
n

∑n
i=1 Ew[f(Xi, w)] = BtL(n). Y2(n) = 1

n

∑n
i=1 Varw[f(Xi, w)] = V (n)/n. The

expansion of F (α) becomes F (α) = −Y1(n)α + Y2(n)
2 α2 − Y3(n)

6 α3 + Op(n−2) as Yk(n) scales as Op(n1−k/2).

Using these expansions for CvL(n) and WAIC(n), we get the asymptotic forms (truncating to order n−2):

WAIC(n) = −Y1(n) + 2β − 1
2 Y2(n) − 1

6Y3(n) + Op(n−2),

CvL(n) = −Y1(n) + 2β − 1
2 Y2(n) − 3β2 − 3β + 1

6 Y3(n) + Op(n−2),

The difference becomes

CvL(n) − WAIC(n) = −β(β − 1)
2 Y3(n) + Op(n−2).

Given Y3(n) = Op(n−1/2), the difference is Op(n−3/2) for general β. When β = 1, this term is zero, which
gives us Op(n−2).

CvL(n) − WAIC(n) = Op(n−3/2) for arbitrary β, CvL(n) − WAIC(n) = Op(n−2) when β = 1. (1)

This is ultimately the crux of Watanabe’s Theorem 1: WAIC and leave-one-out cross-validation are asymp-
totically equivalent as random variables. Their difference converges to zero faster than 1/n.

Birational invariants: the real log-canonical threshold

In a regular model, the expected log-likelihood EX [log p(X|w)] has a unique maximum at w0, and near w0,
the KL divergence K(w) = EX [f(X, w)] − EX [f(X, w0)] behaves quadratically:

K(w) ≈ 1
2(w − w0)T I(w0)(w − w0),

where I(w0) is the non-singular Fisher Information Matrix. The integral of e−nK(w) over a neighbor-
hood of w0 is quite important for large n asymptotics (Laplace approximation). This integral scales like

5

∫
e−n 1

2 ∥w−w0∥2
I(w0)dw ∼ n−d/2. This n−d/2 scaling of volume near the minimum gives us the d/2 log n term

in the asymptotic expansion of the negative log marginal likelihood:

E[− log p(Dn|model)] ≈ nEX [f(X, w0)] + d

2 log n.

As aformentioned, for deep networks, the parameter-to-distribution map is non-identifiable, and the set
W0 = {w | K(w) = 0} is a singular analytic variety. K(w) does not vanish quadratically near W0. To analyze
the large n asymptotics of the posterior integral

∫ ∏
p(Xi|w)βφ(w)dw, which depends on the behavior of

the likelihood function near W0, we use algebraic geometry.

KL divergence K(w) quantifies the discrepancy from the true distribution (pretty well known). What
Wantanabe does that is particularly interesting, is learn the zeta-function ζ(z) =

∫
W

K(w)zφ(w) dw. For a
regular model with K(w) ∼ ∥w − w0∥2, the volume {w | K(w) < ϵ} scales like ϵd/2, leading ζ(z) to have
poles related to −d/2.

For a singular model, the volume scaling is more interesting, say like ϵλ(log(1/ϵ))θ−1. This scaling implies
ζ(z) has poles at z = −λ with multiplicity θ.

But this resolution of singularities means that we can analyze ζ(z). It maps a smooth space U to W

(π : U → W) such that K(w) becomes simpler in u coordinates, locally
∏

u
kj

j .
∫

K(w)zφ(w)dw transforms
to
∫

K(π(u))zφ(π(u))| det Dπ(u)|du. The exponents kj of K(π(u)) and hj of the Jacobian term | det Dπ(u)|
determine the poles z = −(hj + 1)/(2kj). The real log-canonical threshold (λ) is defined as the maximum of
these values:

λ = max
j

hj + 1
2kj

.

λ is a birational invariant, independent of parameterization or prior. This is very interesting because it gives
us a way of measuring the severity of the singularity and replacing d/2 as the volume scaling exponent near
W0. The singular fluctuation ν(β) is a second invariant! This means specific posterior spread, defined via
V (n) is captured by it.

Watanabe proves that these invariants govern the asymptotic expectation of errors:

lim
n→∞

nE[Bg(n)] = λ − ν(β)
β

+ ν(β), lim
n→∞

nB≈(n)] = λ − ν(β)
β

− ν(β). (2)

n(Bg(n) + Bt(n)) + V (n) →p 2λ/β also holds.

Cross-validation mirrors generalisation through λ

Combining the CvL/WAIC equivalence (Eq. 1) and the error asymptotics (Eq. 2) yields Theorem 2, we get:

Bg(n) + CvL(n) = (β − 1)V (n)
n

+ 2λ

βn
+ op(n−1);

in particular, when β = 1, Bg(n) + CvL(n) = 2λ

n
+ op(n−1). (3)

This essentially means CvL(n) is an asymptotically unbiased estimator for Bg(n) up to O(1/n), with the
bias term controlled by λ and ν. For standard Bayesian learning (β = 1), it is the relationship is particularly
simple. The key takeaway is that λ’s directly influences the 1/n bias term.

Corollaries: For β = 1, Bg(n) and CvL(n) have asymptotically the same variance, making CvL/WAIC
optimal estimators in a sense. Since λ ≪ d/2 for deep nets, the 2λ/n bias is much smaller than d/n or
(d log n)/(2n). This is why BIC over-penalizes singular models.

6

Sketch of the proof of Theorem 3

1. WAIC-CvL Equivalence (Theorem 1): This follows from using the cumulant expansions of the func-
tional cumulant generating function F (α). We expand F (α) around α = 0 up to order n−2 and compare
the expansions for WAIC and CvL. This gives us Op(n−3/2) or Op(n−2).

2. Asymptotic Expansion of the Free Energy: We start with the expected negative log marginal likelihood,
E[− log Zn,β]:

Zn,β =
∫ ∏

p(Xi|w)βφ(w)dw.

We taylor expand
∑

f(Xi, w) around w0 and relate the integral to
∫

e−nβK(w)φ(w)dw (plus terms for
empirical fluctuations), We can then claim that SLT shows that the expectation has an asymptotic
expansion:

E[− log Zn,β] = nEX [f(X, w0)] + λ log(nβ) − (θ − 1) log log(nβ) + O(1).

We get λ from the n−λβ−λ scaling of the integral
∫

e−nβK(w)φ(w)dw. This scaling happens because
the volume of parameter space where K(w) < ϵ scales like ϵλ, and the integral

∫
e−CK(w)dµ scales like

C−λ for large C, with C = nβ.

3. Relating Errors to Free Energy: The expected training and generalization errors are related to the free
energy through physics thermodynamic-like identities, which I admittedly have very little intuition for.
But, for instance, the expected value of the total log-likelihood E[n ·BtL(n)] is related to the derivative
of the expected free energy with respect to inverse temperature:

E[n · BtL(n)] = E

[
n∑

i=1
Ew[f(Xi, w)]

]
= − ∂

∂β
E[− log Zn,β].

Now we just take derivatives of the asymptotic expansion from Step 2 with respect to β. This gives
us the asymptotic forms in Eq. (2) involving λ and ν. For instance, the derivative of λ log(nβ) with
respect to β is λ 1

nβ n = λ/β. After some more tinkering involving some expectations over data sets, we
see that it accounts for the λ terms in Eq. (2).

4. Combining Results and Variance Control: Now we just need to combine the asymptotic equivalence of
CvL and WAIC (Step 1) with the relationships derived in Step 3. We have the term (β − 1)V (n)/n
in Eq. (3) from the difference between WAIC and expected training loss. By simple controls over the
fluctuations of things like V (n) around their expectations (Lemma 1), we can convert these expectation-
based equalities (like Eq. 2) into high-probability statements (like Eq. 3).

The Generic Singularity of Deep Networks
Section 1 introduced that SLT applies when a model’s set of optimal parameters forms a singular analytic
variety, leading to a singular Fisher Information Matrix or KL Hessian. Murfet et al. show that deep neural
networks generically do in fact have this property. They then try to outline why their Fisher Information
matrix is degenerate.

The argument is that the problem largely has to do with the inherent non-identifiability and parameter
redundancy in deep networks, similar to what was outlined in Section 1. Many different parameter values w
produce the exact same function f(x, w). This redundancy implies that the gradient vectors {∂wi

f(x, w)}
are linearly dependent in function space. It is easy to see that the Fisher Information and the KL Hessian
(at a true parameter) are Gram matrices of these gradients. Therefore, their singularity is equivalent to this
linear dependency: there exists a non-zero vector v such that

d∑
i=1

vi∂wi
f(x, w0) = 0 for q-almost all x.

7

Murfet et al. prove the existence of such v for ReLU and SiLU networks (Lemma 2). I will give a quick
sketch down below.

The core of the argument for ReLU networks comes from a differential equation satisfied by the network
function f . Lemma 1 (Appendix A.1) shows that for any hidden ReLU neuron j in layer l, the network
function f satisfies: (∑

k

wl
jk

∂

∂wl
jk

+ bl
j

∂

∂bl
j

−
∑

i

wl+1
ij

∂

∂wl+1
ij

)
f(x, w) = 0

Obviously, this holds for inputs x where none of the pre-activations u are zero. The terms wl
jk are weights

into neuron j from layer l − 1, bl
j is the bias of neuron j, and wl+1

ij are weights out of neuron j to layer l + 1.

Much of the proof is spent computing the partial derivatives ∂f
∂wl

jk

, ∂f
∂bl

j

, and ∂f

∂wl+1
ij

using the chain rule and
the properties of the ReLU derivative, and showing that this specific linear combination sums to zero. The
implication is essentially that this corresponds to a direction in parameter space (defined by the vector v
with components wl

jk, bl
j , −wl+1

ij) where the function f(x, w) does not change locally.

Lemma 2 uses result to prove the degeneracy of the Fisher and Hessian. The Fisher Information Matrix I(w)
has entries I(w)rs =

∫
⟨ ∂f(x,w)

∂wr
, ∂f(x,w)

∂ws
⟩q(x)dx. If we form a linear combination of the rows of this matrix

using the coefficients vs from the differential equation, we get:

∑
s

vsI(w)rs =
∑

s

vs

∫ 〈
∂f

∂wr
,

∂f

∂ws

〉
q(x)dx =

∫ 〈
∂f

∂wr
,
∑

s

vs
∂f

∂ws

〉
q(x)dx.

Since
∑

s vs
∂f

∂ws
= 0 (from Lemma 1),

∑
s vsI(w)rs = 0. The implication is that the rows of I(w) are linearly

dependent for any w with a non-trivial hidden neuron. Therefore, I(w) is degenerate!

For the Hessian of the KL divergence, D2K(w), its general form is given by D2K(w)rs =
∫

⟨ ∂f
∂wr

, ∂f
∂ws

⟩q(x)dx+∫
⟨f(x, w) − f(x, w0), ∂2f

∂wr∂ws
⟩q(x)dx. At a true parameter w0 ∈ W0, f(x, w0) − f(x, w0) = 0. Therefore,

D2K(w0)rs =
∫ 〈

∂f(x, w0)
∂wr

,
∂f(x, w0)

∂ws

〉
q(x)dx.

This shows that at a true parameter w0, the Hessian D2K(w0) is proportional to the Fisher Information
Matrix I(w0). Since I(w0) is degenerate (as shown above), D2K(w0) is also degenerate at any true parameter
w0 involving non-trivial hidden neurons.

Basically the above construction is a rigorous construction that shows that deep networks satisfy the singu-
larity condition in SLT i.e. the Hessian at the true parameter is degenerate.

Empirical Estimation of λ via Tempered Posteriors

In section 1, we established that the theoretical invariant λ governs the asymptotic behavior of Bayesian
quantities. For instance, it appears in expansions of the marginal likelihood and expected errors. Murfet et
al. use one of these asymptotic results (Theorem 4 in Watanabe [2013], related to the free energy expansion in
Section 1) about the expected total training loss evaluated under tempered posteriors. The theory essentially
states that for large n and small temperature T = 1/β:

EDn

[
Ew∼πn,1/T

[nLn(w)]
]

≈ nEX [f(X, w0)] + λT.

This linear relationship between expected total training loss and temperature T , with slope λ, is how we
construct the empirical estimation method. For a fixed dataset Dn, we approximate the expectation over
datasets by sampling w from the tempered posterior πn,1/T for various temperatures Tj . The procedure
works as follows:

8

1. Loop through each training dataset Dn in the set T . I think about this in robustness terms i.e. because
λ is a property of the model class and the true distribution, averaging estimates over multiple datasets
provides a more robust result than relying on a single dataset’s specific realization of noise.

2. For the current dataset Dn, enter an inner loop that iterates through the specified range of inverse
temperatures βj (or temperatures Tj = 1/βj).

3. Inside this inner loop, for each specific inverse temperature βj , obtain a set of R approximate samples
{w1, . . . , wR} from pβj (w|Dn). They use a NUTS variant of Hamiltonian Monte Carlo (HMC) to get
these samples. Without getting into the weeds, it is apparently great at “exploring complex parameter
spaces”. In their experiments, they collected R = 20, 000 samples for each βj and dataset, discarding
the first 1000 as burn-in.

4. Using these samples, approximate the expected total training loss under the posterior for this βj and
Dn:

Êj = 1
R

R∑
r=1

nLn(wr).

The Êj essentially provides a data point (Tj , Êj) corresponding to the theoretical relationship
EDn [Eπn,1/T

[nLn(w)]] ≈ nEX [f(X, w0)] + λT .

5. Once the inner loop is complete (i.e., Êj has been computed for all Tj in Dn), perform a linear regression
on the pairs {(Tj , Êj)} to fit the linear model. The slope essentially gives you an estimate λ̂(Dn) for
the true λ based on this single dataset(they use generalized least squares to get this). In their Table 2
experiments, they used 5 different inverse temperatures βj .

6. After looping through all datasets in T and obtaining an estimate λ̂(Dn) for each, the algorithm
outputs the average of these estimates:

λ̂ = 1
|T |

∑
Dn∈T

λ̂(Dn).

The final average is the empirical estimate of the real log canonical threshold λ.

Their experiments on small networks (Table 2) had a λ̂ ≈ 0.55, which is way lower than the classical
d/2 = 10.5. Therefore, the excellent linear fits (R2 > 0.99) empirically validated the predicted asymptotic
linear behavior. So now we have a validation for the lower effective complexity interpretation/explanation.

λ, Flat Minima, and Generalization Error

Now that we have found λ ≪ d/2 from empirical estimation, we can actually say some things about some of
the key concepts we are interested in(generalization, minima etc). For one, we have a theoretical explanation
for why classical “flat minima” heuristics, often using the Hessian determinant, fail. As discussed in Section
1, the singular geometry means the volume of parameters near the true function scales with ϵλ(log(1/ϵ))θ−1,
not ϵd/2. λ is the correct exponent governing this volume scaling, relevant for Bayesian model evidence, not
the local Hessian determinant.

Another thing we can verify is the direct link between λ and generalization error predicted by SLT (Theorem
2, Section 1, implying EnG(n) ≈ λ/n) is also empirically verified. Murfet et al. plot n · G(n) against
n. As expected if G(n) ≈ λ/n, their plots (Figure 1) show nG(n) converging to a value that matches the
independently estimated λ̂ (Table 1). In essence, this is evidence that λ controls the asymptotic generalization
rate. By extension, architecture choices impacting λ (even if increasing d) can improve generalization.

Finally, they apply λ̂ to Bayesian model selection. Classical BIC uses a d log n penalty, which is heir to the
classic n−d/2 marginal likelihood scaling in regular models. For singular models, theory predicts an n−λ

scaling i.e. a λ log n penalty (WBIC). Murfet et al. essentially show that WBIC using their estimated λ̂
successfully identifies best-generalizing models.

9

KL Risk for Linear Feed-Forward Networks
Now we are on to our final survey paper. Before we get to the result, we need to set up some preliminaries.

Let us consider a fully linear feed-forward network with L hidden layers. We denote the dimension of layer
s as H(s), for s = 1, . . . , L + 1, where H(L+1) is the input dimension and H(1) is the output dimension. The
network function h(x, w) is a composition of linear maps F (s)(x) = A(s)x + B(s), where A(s) is a weight
matrix of size H(s) × H(s+1) and B(s) is a bias vector of size H(s). The network function for an input
x ∈ RH(L+1) is given by the composition h(x, A, B) = F (1) ◦ F (2) ◦ · · · ◦ F (L)(x).

Expanding this composition, we can write h(x, A, B) as a linear function of x:

h(x, A, B) =
(

L∏
s=1

A(s)

)
x +

L∑
S=2

(
S−1∏
s=1

A(s)

)
B(S) + B(1).

Here, the product
∏S−1

s=1 A(s) is interpreted as the identity matrix if S − 1 < 1. Let w = ({A(s)}, {B(s)})
denote the set of parameters and w∗ = ({A∗(s)}, {B∗(s)}) be the true parameters.

Assuming a Gaussian noise model for the output, the KL divergence K(w) is given by:

K(w) = 1
2

∫
X

∥h(x, w) − h(x, w∗)∥2q(x)dx,

where q(x) is the probability density function of the input x.

The key result we will be focusing on is Aoyagi’s Theorem 3, which essentially simplifies the seemingly
hard problem of analyzingp the singularity of K(w). It states that for a polynomial function h(x, w) in x
(which our linear network function is) and a positive continuous function q(x) on its support X ⊂ RN with∫

X
q(x)dx > 0, there exist positive constants α1, α2 such that the L2 ∫

X
h2(x, w)q(x)dx is equivalent to the

squared Euclidean norm of the polynomial’s coefficients. Another way to think about it is, if v(w) is the
vector of coefficients of h(x, w) as a polynomial in x, then K(w) is equivalent to ∥v(w) − v(w∗)∥2.

α1∥v(w)∥2 ≤
∫

X

h2(x, w)q(x)dx ≤ α2∥v(w)∥2.

The proof is fairly straightforward. We begin by showing
∫

X
h2(x, w)q(x)dx = v(w)T

(∫
X

C(x)q(x)dx
)

v(w),
where C(x) is a positive semidefinite matrix whose elements are products of monomials in x. Since q(x) > 0
on X,

∫
X

C(x)q(x)dx is positive definite. This gives us the equivalence with ∥v(w)∥2.

Applying this toh(x, w) − h(x, w∗), which is also a linear function of x, means that analyzing the singularity
of K(w) near the set of true parameters W0 = {w | h(x, w) = h(x, w∗) for all x} is equivalent to analyzing
the singularity of the squared Euclidean norm of the vector of coefficients of h(x, w) − h(x, w∗).

We can actually write h(x, w) − h(x, w∗) explicitly as:

h(x, w) − h(x, w∗) =
(

L∏
s=1

A(s) −
L∏

s=1
A∗(s)

)
x +

(
L∑

S=2

(
S−1∏
s=1

A(s)B(S) −
S−1∏
s=1

A∗(s)B∗(S)

)
+ (B(1) − B∗(1))

)
.

Theorem 4 proves that the singularity of K(w) is equivalent to the singularity of the sum of the squared
Frobenius norm of the matrix product difference and the squared Euclidean norm of the overall bias difference
term:

cw∗(K(w)) = cw∗(∥
L∏

s=1
A(s) −

L∏
s=1

A∗(s)∥2 + ∥BiasTerms(w) − BiasTerms(w∗)∥2).

where BiasTerms(w) =
∑L

S=2

(∏S−1
s=1 A(s)

)
B(S) + B(1).

10

Her analysis shows that the term ∥BiasTerms(w) − BiasTerms(w∗)∥2 can be related to the norm squared
of a vector in RH(1) , which contributes H(1)/2 to λ independently. Much of it focuses on ∥

∏L
s=1 A(s) −∏L

s=1 A∗(s)∥2. The singularity arises from the constraint that
∏

A(s) =
∏

A∗(s), especially when the rank r
of the true product

∏
A∗(s) is less than the minimum dimension of the matrices involved. Unsurprisingly,

the geometry of this singularity is complex and depends on the dimensions of all layers.

Resolving Singularities using Blow-ups

To analyze the rate at which the term ∥
∏L

s=1 A(s) −
∏L

s=1 A∗(s)∥2 vanishes near the singular set where the
product is fixed to

∏
A∗(s), Aoyagi uses “resolution of singularities” via toric blow-ups”. This is where she

does some algebraic geometry machinery to handle the geometry near W0.

As we discussed earlier, a blow-up provides a coordinate change π : U → W that simplifies the local structure
of a singular set or function. For singularities related to matrix rank, a sequence of blow-ups transforms
the parameters w into new local coordinates u = (u1, . . . , um) such that the function we are analyzing (the
matrix product difference norm squared) takes a simplified form near u = 0:

∥
L∏

s=1
A(π(u)) −

L∏
s=1

A∗(π(u))∥2 ≈
m∏

j=1
u

2kj

j

for positive integer exponents kj . Simultaneously, the transformation of the prior density weighted by the
Jacobian determinant also takes a monomial-like form:

| det Dπ(u)|φ(π(u)) ≈
m∏

j=1
u

hj

j b(u),

where hj are integers and b(u) is a non-zero analytic function at u = 0.

The interesting result is that the learning coefficients λ and θ are determined by these exponents. The
integral

∫
K(w)zφ(w)dw transforms to

∫
K(π(u))z| det Dπ(u)|φ(π(u))du. Near the singularity (u = 0),

this integral behaves like
∫

(
∏

u
2kj

j)z(
∏

u
hj

j)b(u)du =
∫ ∏

u
2zkj+hj

j b(u)du. The poles of this integral, which
determine the poles of ζ(z)(the learning function), occur when 2zkj + hj = −1 for any index j, leading to
poles at z = −(hj + 1)/(2kj).

So why go through all this machinery. Ultimately, by transforming the singular integral into an integral
involving monomials, we can explicitly read off the exponents kj and hj . These exponents determine the
poles of the learning zeta function ζ(z), and thus the real log canonical threshold λ and its multiplicity
θ. As established in Section 1 (Watanabe’s theory), λ is defined by these poles and directly governs the
asymptotic behavior of Bayesian generalization error and model evidence. What Aoyagi gives us is the math
to “compute” these exponents for specific models like linear networks by explicitly identifying how these
exponents combine based on the network dimensions and rank.

Exact Learning Coefficients for Linear Networks

Definition 4 introduces parameters ℓ, M, a based on the analysis of the excess widths M (s) = H(s) − r. Let
{S1, . . . , Sℓ+1} be the indices of the ℓ + 1 smallest excess widths M (s) for s = 1, . . . , L + 1. These parameters
are then used in the formula for λ(H(1), . . . , H(L+1), r) and θ(H(1), . . . , H(L+1), r). These essentially represent
the contributions from the product part of the singularity. The formula for the product part contribution to
λ is given by:

λ(H(1), . . . , H(L+1), r) = −r2 + r(H(1) + H(L+1))
2 +

Ma + (M − 1)
∑ℓ+1

j=1 M (Sj)

4ℓ
− 1

4

ℓ+1∑
j=1

(M (Sj))2.

The first two terms, −r2+r(H(1)+H(L+1))
2 , come from the base geometry of the space of matrices of rank r.

The remaining terms come from some tinkering with the exponents yielded by the blow-up centered on the
singularity related to the excess dimensions in the layers.

11

Now we move to theorem 4 where we ultimately get a representation for the learning coefficients in a linear
network. For this, we just combine the contribution from the product part and the bias term B(1). As
mentioned earlier, the bias B(1) contributes H(1)/2 to λ and 1 to θ independently. Therefore:

λ = H(1)

2 + λ(H(1), H(2), . . . , H(L+1), r)

θ = θ(H(1), H(2), . . . , H(L+1), r)

where λ(. . . , r) and θ(. . . , r) follow from Defn 4.

We can actually prove this. We just have to show equivalence between the singularity of K(w) and the sum
of the squared norms of the matrix product difference.

Recall that the KL divergence is K(w) = 1
2
∫

X
∥h(x, w) − h(x, w∗)∥2q(x)dx. As shown by Theorem 3, K(w)

is equivalent to the squared norm of the vector of coefficients of h(x, w)−h(x, w∗) as a polynomial in x. The
difference h(x, w) − h(x, w∗) can be rewritten as

h(x, w) − h(x, w∗) =
(

L∏
s=1

A(s) −
L∏

s=1
A∗(s)

)
x +

(
L∑

S=2

(
S−1∏
s=1

A(s)B(S) −
S−1∏
s=1

A∗(s)B∗(S)

)
+ (B(1) − B∗(1))

)
.

Let PL(w) =
∏L

s=1 A(s) and Bterms(w) =
∑L

S=2(
∏S−1

s=1 A(s))B(S) + B(1). The expression is (PL(w) −
PL(w∗))x + (Bterms(w) − Bterms(w∗)).

Now we use Lemma 1(2) in the paper which states that the log canonical threshold of a sum of squared
norms of vectors of functions is equivalent to the log canonical threshold of the sum of the squared norms if
the sets of variables are independent. We are interested in this because it allows us to treat the singularity
arising from the matrix product difference and the singularity arising from the bias terms separately.

∥PL(w) − PL(w∗)∥2 + ∥Bterms(w) − Bterms(w∗)∥2.

∥PL(w) − PL(w∗)∥2 tells you a lot about the entries of the matrix product difference. If we analyze the
singularity using blow-ups, we get λ(H(1), . . . , H(L+1), r) given in Definition 4.

Now we can do change of variable on ∥Bterms(w)−Bterms(w∗)∥2, entries of the composite bias vector.involves
the entries of the composite bias vector. It is easy to see that this is ∥B(1) −B∗(1)∥2. We don’t have to worry
about the other terms in the difference because they do not end up introducing singularities worse than the
B(1) term when considering their contribution to the overall singularity at w∗. ∥B(1) −B∗(1)∥2 involves H(1)

independent squared differences of parameters related to the final bias. Therefore, its singularity contributes
H(1)/2 to λ and 1 to θ.

Since the singularity of K(w) is equivalent to the sum of the singularities of ∥PL(w)−PL(w∗)∥2 and ∥B(1) −
B∗(1)∥2, their contributions to λ add up, and their contributions to θ combine through an additive rule for
multiplicity. Theorem 4 says that the final result of this combination: λ is the sum of H(1)/2 (from the final
bias) and λ(H(1), . . . , H(L+1), r) (from the matrix product), while θ is the same as θ(H(1), . . . , H(L+1), r) (as
the bias term has multiplicity 1).

Additive Rule for ReLU Networks

For neural networks with ReLU units, the function h+(x, A, B) is piecewise linear. The input space is
partitioned into regions where the activation patterns are constant. Within each region, the network function
is equivalent to a linear network.

I will now present some peripheral theories.

Theorem 5 essentially provides an additive rule for combining singularities. If a function’s singularity can be
decomposed into independent components (think different variables or different branches of a singular set),

12

the learning coefficients of the combined function can be calculated by summing or combining the coefficients
of the components.

Theorem 6 is set up as follows. Let the H(2) hidden units be divided into k(2) groups, corresponding to
different linear regions active near w0. Let ri be the rank of the linear map in region i. Theorem 6 states that
the λ and θ for the three-layer ReLU network are sums/combinations of the coefficients λ(H

′(1)
i , H

(2)
i , H(3) +

1, ri) and θ(H
′(1)
i , H

(2)
i , H(3) + 1, ri) calculated for the corresponding linear sub-models in each region:

λ =
k(2)∑
i=1

λ(H ′(1)
i , H

(2)
i , H(3) + 1, ri)

θ =
k(2)∑
i=1

(θ(H ′(1)
i , H

(2)
i , H(3) + 1, ri) − 1) + 1.

H
′(1)
i is the number of active output units affected by hidden group i, and H

(2)
i is the number of hidden units

in group i. The result essentially implies that ReLU does not create fundamentally new types of singularities
but rather combines existing linear ones.

Example Computation

Just to make these formulations concrete, let us consider a depth-two linear regressor (one hidden layer)
with input dimension d = H(3), hidden width m = H(2), scalar output 1 = H(1), and true rank r = 1.

The dimensions are H(1) = 1, H(2) = m, H(3) = d. The rank of the product A(1)A(2) is r = 1.

The excess widths are M (1) = H(1) − r = 1 − 1 = 0, M (2) = H(2) − r = m − 1, M (3) = H(3) − r = d − 1.

The bias term B(1) has dimension H(1) = 1, which contributes H(1)/2 = 1/2 to λ. Using the formulas from
Definition 4 and Theorem 4 with these values, the calculation for λ and θ gives us:

λ = d

2 + m − 1
4

θ = 1

This essentially shows us that λ scales linearly with the input dimension d and hidden dimension m for
this specific network structure. For instance, increasing input dimension d by 1 increases λ by 1/2, while
increasing hidden dimension m by 1 increases λ by only 1/4.

Impact on Learning Curves and Model Selection

These exact computations of λ and θ are incredibly helpful. This is mostly because they provide the precise
constants needed for Watanabe’s asymptotic formulas (as discussed in Section 1):

E[generalization error at n] ≈ λ

n
+ o(n−1)

− log p(Dn | model) ≈ nLn(w0) + λ log n − (θ − 1) log log n + O(1).

We see that λ dictates the dominant 1/n rate of decay of the generalization error, and (λ, θ) determine the
dominant terms in the asymptotic expansion of the marginal likelihood.

This is really exciting because it provides rigorous support for Wantanabe’s predictions. Replacing the
classical BIC penalty d

2 log n with λ log n gives us criteria (like WBIC) that are asymptotically unbiased for
deep networks, using the correct complexity measure λ instead of the misleading parameter count d.

13

Conclusion
In conclusion, this paper demonstrates how Singular Learning Theory provides a much more reasonable
mathematical framework for understanding generalization in deep neural networks, where classical methods
fail due to the singular geometry of their parameter spaces. Watanabe’s theory establishes the RLCT(λ) as
the important invariant that controls Bayesian generalization error and model evidence. Murfet et al. give
good evidence for the singularity of DNNs, show how λ can be estimated in practice. Aoyagi’s exact
calculations for specific architectures like linear and ReLU networks further confirm the theory, and essentially
give us precise values for λ and θ. Some potential avenues for work that I see include extending this framework
to more complex architecture such as transformers and also thinking about the preciseness of lambda for
other activations which are not exactly linear.

References
[1] Aoyagi, M. (2025). Singular leaning coefficients and efficiency in learning theory. arXiv preprint,

arXiv:2501.12747.

[2] Murfet, D., Wei, S., Gong, M., Li, H., Gell-Redman, J., & Quella, T. (2020). Deep Learning is Singular,
and That’s Good. arXiv preprint, arXiv:2010.11560.

[3] Watanabe, S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Infor-
mation Criterion in Singular Learning Theory. Journal of Machine Learning Research, 11, 3571–3594.

14

	Introduction
	Bayesian learning in singular models and Watanabe's equivalence theorem
	Generalisation, training, and functional variance
	Cross-validation in the Bayesian posterior
	Birational invariants: the real log-canonical threshold
	Cross-validation mirrors generalisation through \lambda
	Sketch of the proof of Theorem 3

	The Generic Singularity of Deep Networks
	Empirical Estimation of \lambda via Tempered Posteriors
	\lambda, Flat Minima, and Generalization Error

	KL Risk for Linear Feed-Forward Networks
	Resolving Singularities using Blow-ups
	Exact Learning Coefficients for Linear Networks
	Additive Rule for ReLU Networks
	Example Computation
	Impact on Learning Curves and Model Selection

	Conclusion

