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1 Introduction

Many applications in science, engineering, finance, etc necessitate solving non-convex opti-
mization problems of the form:

minimize
x∈Rd

f(x), (1)

where f(x) is non-convex and non-smooth. The goal is to identify its global minimizer or,
at the very least, obtain a high-quality local one.

We aim to solve the non-convex optimization via sampling algorithms. The idea is
inspired by recent progress in the sampling algorithms and the relationship between sam-
pling and optimization (Wibisono, 2018; Lee et al., 2021; Chen et al., 2022), where these
works provide insights for analysis sampling algorithm from an optimization perspective.
We look at the problem the other way around, where we view the optimization problem as
the problem of drawing samples from the distribution ν(x) ∝ e−f(x) induced by optimiza-
tion problem (1). Intuitively, ν(x) assigns high probability density to regions where f(x) is
small, making samples drawn from ν(x) likely to minimize f(x) (See Figure 1).

To concretize how non-convex optimization may arise in practice, we provide a sequential
decision-making problem in example 1. Then, in the upcoming section, we’ll outline initial
ideas for convergence analysis on these sampling algorithms that apply to (non-convex)
optimization problems. Finally, we will close this article with a short discussion section.

Example 1 We consider a trajectory optimization problem

minimize
si,ui

∑T−1
i=0 l(si, ui) + lT (sT )

subject to si+1 = g(si, ui)
si = a0,

(2)

where sk ∈ Rn represents the states, uk ∈ Rm denotes the control inputs, a0 is the initial
state, g : Rn × Rm → Rn represents the dynamics, and l : Rn × Rm → R+ along with
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Figure 1: Samples draw from ν is likely to around global minimizer of f(x)

lT : Rn → R+ define our objective. The problem is non-convex when the dynamics g is
non-linear.

One approach to tackle problem (2) is through shooting, where the problem is refor-
mulated as an optimization problem solely in the sequence of control inputs, denoted as
U = [u⊤0 , . . . , u

⊤
T−1]

⊤ ∈ Rm(T−1). In this method, the states sk are computed explicitly
as sk = g(g(g(. . . , uk−3), uk−2), uk−1), and the objective function is defined as J(U) =∑T−1

i=0 l(si, ui) + lT (sT ), which give us the non-convex optimization problem

minimize
U∈Rm(T−1)

J(U) (3)

2 Theoretical Analysis

In this section, we aim to conduct a theoretical analysis of optimization algorithms within
the sampling framework. Our analysis will be divided into two parts:

1. Determining the number of iterations needed to run a sampling algorithm to obtain
a sample X with distribution ν ∝ e−f(x).

2. Assessing the probability that a sampleX drawn from ν is close to the global minimizer
of f(x).

For simplicity, we’ll assume that the optimization problem (1) has a unique global
minimizer x∗ and that the objective function f is smooth. We’ll focus exclusively on the
Markov chain Monte Carlo (MCMC) sampling algorithm within the scope of this discussion.

2.1 Background on Langevin Dynamics

Here we introduce one MCMC sampling algorithm we considered in this article: Langevin
dynamics(LD). It’s worth noting that several other sampling algorithms, such as Hamilto-
nian Monte Carlo, Gibbs sampling, and Metropolis-Hastings, could also be suitable. We
selected LD as a concrete example for our analysis, but the good choice of sampling algo-
rithm for a particular nonconvex optimization problem may vary in practice.
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The LD is defined by following the stochastic differential equation(SDE)

dXt = −∇f(Xt)dt︸ ︷︷ ︸
gradient flow

+
√
2dWt︸ ︷︷ ︸

Brownian motion

. (4)

Since LD can be viewed as ”a gradient flow + noise”, it is no wonder why we can potentially
use it for optimization.

To sample from the target distribution ν(x) using LD, we initialize a random variable
from an arbitrary distribution µ0 (often chosen as the standard Gaussian distribution):
X0 ∼ µ0. We then simulate the LD (4) forward to obtain Xt with distribution µt. As we
progress in time, the distribution µt approximates the target distribution ν(x).

Figure 2: The objective function to minimize involves along LD: Initially, the samples X0

are drawn from a standard Gaussian distribution µ0 ∝ e−x2
, implying that with high prob-

ability, X0 minimizes the quadratic function h0(x) = x2. Then, as the LD progresses, the
distribution of Xt, denoted as µt ∝ e−ht(x), approaches the target distribution ν. Equiv-
alently, we can say that the objective function ht(x), which is minimized by Xt with high
probability, gradually approaches the target objective f(x).

We can interpret the process of LD as follows: we start from samples X0 ∼ µ0 ∝ e−h0(x)

where the h0(x) is relatively easy to optimize, and as we progress, Xt ∼ µt ∝ e−ht(x) evolves
to minimize ht(x), which gradually becomes closer to our target objective f(x). Eventually,
Xt converges to a point where it is highly likely to minimize f(x). Figure 2 illustrates this
idea of the objective function shifting along LD.

We gauge the progress of LD by measuring the Kullback-Leibler (KL) divergence be-
tween the induced density function KL(µt|ν). In the next subsection, we demonstrate that
if we allow LD to run for a sufficiently long time, the samples will essentially follow the
distribution ν(x), i.e., Xt ∼ ν(x), regardless of the form of f(x). Additionally, we show that
when the target distribution ν satisfies logarithmic Sobolev inequalities (LSI), the converge
rate is linear in terms of KL divergence.

2.2 Convergence of LD

Here we provide a convergence analysis of the LD algorithm, we show the KL divergence
between the distribution of Xt ∼ µt and the target distribution ν ∝ e−f(x) is always
decreasing along LD (with some minor regularity conditions). Moreover, when our target
ν satisfies α-LSI condition, the KL divergence will decrease linearly over time.
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Below we outline several important lemmas that are instrumental in proving our main
results.

Lemma 1 Let µt ∈ µ(Rd) be the distribution of Xt ∈ Rd. If Xt envolves following the
LD (4), then the density µt envolves following the Fokker-Planck equation, which is the
following partial differential equations:

∂µt

∂t
= ∇ · (µt∇f) + ∆µt (5)

Here, ∇ · (µt∇f) is the divergence of the vector fields µt∇f and ∆µt is the Laplacian of
distribution µt.

Recall for any vector field b(x) = [b1(x), . . . , bd(x)]
⊤ ∈ Rd, the divergence of b is given

by

(∇ · b) =
d∑

i=1

∂bi
∂xi

. (6)

And for any scalar function ϕ(x) ∈ R, the Laplacian is given by

∆ϕ(x) =
d∑

i=1

∂2ϕ(x)

∂x2
= ∇ · (∇ϕ). (7)

We won’t delve into proving the Fokker-Planck equation in this article, as there are numer-
ous online resources available for that purpose. Instead, we provide the following Corollary
from the Lemma 1.

Corollary 2 The target distribution ν ∝ e−f(x) is the stationary distribution of LD.

Proof The Fokker-Planck equation (5) can be written as

∂µt

∂t
= ∇ ·

(
µt∇ log

µt

ν

)
. (8)

To see so, recall we can write ∇f = −∇ log ν and ∆µt = ∇· (∇µt) = ∇· (µt∇ logµt). Then
we can develop Fokker-Planck equation (5) as

∂µt

∂t
= −∇ · (µt∇ log ν) +∇ · (µt∇ logµt)

= ∇ · (µt(∇ logµt −∇ log ν))

= ∇ ·
(
µt∇ log

µt

ν

)
. (9)

Then for any x, if we substitute µt(x) = ν(x), we have ∂µt

∂t (ν(x)) = ∇·
(
ν(x)∇ log ν(x)

ν(x)

)
= 0.

Now, we want to show for any µt ̸= ν, along the LD, we have the KL divergence always
decreasing. This is given the de Bruijn’s Identity:
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Theorem 3 (de Bruijn’s Identity) If for any µt, we have that µt and ν are differentiable and
vanish at infinity: Eµt [|∇ logµt(x)|] < ∞, Eν [|∇ log νt(x)|] < ∞, and lim|x|→∞[µt(x)∇ν(x)] =
0, then along the LD, we have the KL divergence between the distribution µt and the target
ν involve as the negative relative Fisher information:

dKL(µt∥ν)
dt

= −FI(µt∥ν) (10)

Proof Recall the KL divergence between µt and ν is given by

KL(µt∥ν) = Eµt [log
µt

ν
] =

∫
Rd

µt(x) log
µt(x)

ν(x)
dx (11)

We prove de Bruijn’s Identity by the Fokker-Planck Equation and integration by parts:

dKL(µt∥ν)
dt

=
∂
∫
Rd µt(x) log

µt(x)
ν(x) dx

∂t

=

∫
Rd

∂µt

∂x
(x) log

µt(x)

ν(x)
dx+

∫
Rd

µt(x)
1

µt(x)

∂µt

∂t
(x)dx︸ ︷︷ ︸

=
∂
∫
Rd µt(x)dx

∂t
= ∂

∂t
1=0

(By chain rule)

=

∫
Rd

∇ · (µt∇ log
µt

ν
) log

µt

ν
dx (By Fokker-Planck equation)

= −
∫
Rd

µt⟨∇ log
µt

ν
,∇ log

µt

ν
⟩dx (By integration by parts) (12)

= −FI(µt∥ν) (By definition of relative Fisher information). (13)

Given that the relative Fisher information is always positive when µt ̸= ν, the KL between
µt and ν consistently decreases along LD trajectory. As ν is the only stationary distribution,
running LD for an adequate duration ensures the convergence of the Xt distribution towards
ν. We will delve into the speed of this convergence, or the LD algorithm’s mixing time,
focusing particularly on the target distribution ν that α-LSI.

Definition 4 We say ν satisfies the Log-Sobolev Inequality(LSI) with constant α > 0 if for
any distribution µ the following holds:

FI(µ∥ν) ≥ 2αKL(µ∥ν). (14)

If our target distribution ν is α-log concave, or equivalently if f(x) is α-strongly convex,
it satisfies the α-LSI condition with the same constant alpha. However, the α-LSI family
encompasses a broader range of distributions than just the alpha-log concave ones. For
instance, the mixture of Gaussian distribution depicted in Figure 1 also falls within the LSI
family, despite the fact that the f(x) function that induces this distribution is clearly non-
convex. We won’t delve into the conditions under which the distribution induced by ν(x)
satisfies α-LSI or how to determine the constant α. However, we’ll outline the convergence
rate under LD if the target distribution ν does satisfy the α-LSI condition.
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Theorem 5 If ν satisfying α-LSI, then along LD for Xt ∼ µt, for all t ≥ 0:

KL(µt∥ν) ≤ e−2αtKL(µ0∥ν). (15)

Proof By Theorem 3 and α-LSI, we have

d

dt
KL(µt∥ν) = −FI(µt∥ν) ≤ −2αKL(µt∥ν). (16)

Then by Gronwall’s lemma, we conclude:

KL(µt∥ν) ≤ e−2αtKL(µ0∥ν). (17)

Under the KL Divergence, it is not awfully difficult to think of the iteration needed to
approximate the target distribution. We simply need to set a threshold ϵ for the KL
divergence:

KL(µt ∥ ν) ≤ ϵ

Using the exponential decay result:

KL(µ0 ∥ ν)e−2αt ≤ ϵ

Solving for t:

t ≥ 1

2α
log

(
KL(µ0 ∥ ν)

ϵ

)
2.3 Smoothness and Convexity

As could have been observed, the above results make certain assumptions about the smooth-
ness and convexity of the functions concerned. The goal in the next section is to relax some
of the assumptions and find the iterations required analytically. One way this assump-
tion can be relaxed is use the Total Variation as a measure of distance as opposed to the
Kullback–Leibler divergence.

Therefore, in this section, we aim to show that the LD Markov chain converges to the
target distribution ν in TV distance. The proof involves demonstrating that the transition
kernel is contractive in TV distance and then using this property to show convergence.

Definition of TV Distance

The TV distance between two probability measures µ and ν on a measurable space (Rd,B)
is defined as:

dTV (µ, ν) =
1

2

∫
Rd

|µ(x)− ν(x)| dx
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Contractivity in TV Distance

For a Markov chain with transition kernel P , the TV distance after one step is given by:

dTV (µP, νP ) ≤ γdTV (µ, ν)

where γ < 1 is a contraction coefficient.
The transition kernel P for the Langevin Dynamics with step size η and drift term

−∇f(x) is:
P (x, dy) = N(x− η∇f(x), 2ηI) dy

Here, N(m,Σ) denotes the normal distribution with mean m and covariance Σ.

Contractivity of the Transition Kernel

To show that the transition kernel P is contractive in TV distance, we use the fact that
Gaussian smoothing via the transition kernel reduces the TV distance between two distri-
butions. Specifically, if we have two initial distributions µ and ν, the application of the
transition kernel can be viewed as convolving these distributions with a Gaussian kernel.

Consider the TV distance between the distributions after one step of the Markov chain:

dTV (µP, νP ) ≤
∫
Rd

dTV (N(x− η∇f(x), 2ηI), N(y − η∇f(y), 2ηI)) dTV (µ(dx), ν(dy))

Using properties of the Gaussian distribution, we can bound this distance by:

dTV (N(x− η∇f(x), 2ηI), N(y − η∇f(y), 2ηI)) ≤ exp

(
−∥x− y∥2

8η

)
Thus, the TV distance after one step satisfies:

dTV (µP, νP ) ≤
∫
Rd

exp

(
−∥x− y∥2

8η

)
dTV (µ(dx), ν(dy))

Since the exponential term is less than 1, we can set γ = exp
(
−∥x−y∥2

8η

)
and obtain:

dTV (µP, νP ) ≤ γdTV (µ, ν)

where γ < 1.

Convergence and Iteration

By iterating the contractive property, we have:

dTV (µk+1, ν) ≤ γdTV (µk, ν)

Applying this recursively, we get:

dTV (µt, ν) ≤ γtdTV (µ0, ν)
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To achieve dTV (µt, ν) ≤ ϵ, we need:

γtdTV (µ0, ν) ≤ ϵ

Solving for t, we obtain:

t ≥ log(ϵ)− log(dTV (µ0, ν))

log(γ)

Since γ < 1, log(γ) is negative, and taking the negative reciprocal gives a positive bound:

t ≥ log(dTV (µ0, ν))− log(ϵ)

− log(γ)

This demonstrates that the Langevin Dynamics algorithm converges to the target dis-
tribution ν in TV distance, with the number of iterations t depending logarithmically on
the initial TV distance and the desired accuracy ϵ.

2.4 Probability of Samples to be Global Minimum

In the previous section, we discussed how long we need to run a sampling algorithm to
obtain a sample X that follows the distribution ν(x) ∝ e−f(x). In this section, we’ll explore
what happens if we indeed obtain a sample from ν(x) and what the probability is that it’s
close to the global minimizer, denoted as Pr(∥X − x∗∥22 ≤ ϵ2). This analysis will help us
determine the number of i.i.d samples we need to draw from ν(x) to ensure that there exists
a sample in our set of i.i.d samples that lie within an ϵ-ball of the global minimizer with high
probability defined by users. For simplicity, in this subsection, we focus on one-dimensional
cases, i.e. X ∈ R. However, the techniques and analysis used can naturally scale to the
general case, i.e. X ∈ Rd.

Figure 3: Auxiliary function upper/lower bound the f(x)

Our primary approach for establishing the upper and lower bound of Pr(|X−x∗|22 ≤ ϵ2)
involves identifying an auxiliary function g1(x) and g2(x) such that f(x) ≥ g1(x) and
f(x) ≤ g2(x) for all x, and the distributions ρ1(x) ∝ e−g1(x), ρ2(x) ∝ e−g2(x) has easy to
compute cumulative density function (CDF). Figure 3 provides an example of the quadratic
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auxiliary functions that lower/upper bounds the target f(x). We denote Zν =
∫
R e−f(x)dx,

Zρ1 =
∫
R e−g1(x)dx and Zρ2 =

∫
R e−g2(x)dx. By construction, we have e−g2(x) ≤ e−f(x) ≤

e−g1(x) and Zρ2 ≤ Zν ≤ Zρ1 .

Theorem 6 Assume there exists a constant σ > 0 such that f(x) ≥ f(x∗) + σ
2 ∥x − x∗∥22.

Then, we have the probability of the random variable X drawn from the distribution ν ∝
e−f(x) within the ϵ-ball of the global minimizer x∗ upper bounded by:

Pr(∥X − x∗∥ ≤ ϵ) ≤ Zρ1

Zν
(ϕ(

√
σϵ)− ϕ(−

√
σϵ)), (18)

where Zν =
∫
R e−f(x)dx, Zρ1 =

∫
R e−g1(x)dx, with g1(x) = f(x∗) + σ

2 ∥x − x∗∥22 and ϕ(x) is
the CDF of standard Gaussian distribution.

Note our condition does not require f(x) to be convex, although it automatically satisfies
the condition when f(x) is σ-strongly convex.

Proof Noticing the distribution ρ1 ∝ e−g1(x) is a Gaussian distribution with mean x∗ and
variance 1/σ. Therefore, its density function can be explicitly written as

e−g1(x)

Zρ1

=

√
σ√
2π

e−
σ∥x−x∗∥2

2 (19)

We can upper bound the probability of the random variable X ∼ ν(x) ∝ e−f(x) be ϵ closed
to the global minimizer by assuming the random variable drawn from ρ1:

Pr(∥X − x∗∥ ≤ ϵ) =
1

Zν

∫ x∗+ϵ

x∗−ϵ
e−f(x)dx

≤ 1

Zν

∫ x∗+ϵ

x∗−ϵ
e−g1(x)dx

=
Zρ1

Zν

∫ x∗+ϵ

x∗−ϵ

e−g1(x)

Zρ1

dx

=
Zρ1

Zν

∫ x∗+ϵ

x∗−ϵ

√
σ√
2π

e−
σ∥x−x∗∥2

2 dx

=
Zρ1

Zν

∫ √
σϵ

−
√
σϵ

√
σ√
2π

e−
y2

2 d(
y√
σ
+ x∗)

=
Zρ1

Zν
(

∫ √
σϵ

−∞

1√
2π

e−
y2

2 dy −
∫ −

√
σϵ

−∞

1√
2π

e−
y2

2 dy)

=
Zρ1

Zν
(ϕ(

√
σϵ)− ϕ(−

√
σϵ)), (20)
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Theorem 7 Assume the f(x) is L-smooth, then we have the probability of the random
variable X drawn from the distribution ν ∝ e−f(x) within the ϵ-ball of the global minimizer
x∗ lower bounded by:

Pr(∥X − x∗∥ ≤ ϵ) ≥ Zρ2

Zν
(ϕ(

√
Lϵ)− ϕ(−

√
Lϵ)), (21)

where Zρ2 =
∫
R e−g2(x)dx, with g2(x) = f(x∗) + L

2 ∥x− x∗∥22.

By smoothness, we have f(x) ≤ f(x∗) + L
2 ∥x − x∗∥22,∀x. Then, by similar techniques, we

applied to prove Theorem 6 we can obtain the results.
With Theorem 6 and Theorem 7, we can compute the number of samples needed from

the distribution ν to ensure that the probability of at least one sample lying within an ϵ-ball
of x∗ exceeds a given threshold δ.

Theorem 8 Assume we have i.i.d a set samples X = {X1, X2, . . . } drawn from the dis-
tribution ν ∝ e−f(x) and our target objective f(x) satisfies the conditions of Theorems 6
and 7. Then, to guarantee that the probability of at least one sample lying within an ϵ-ball
of x∗ is greater than δ, i.e.,

Pr(∃Xi ∈ X , such that ∥Xi − x∗∥ ≤ ϵ) ≥ δ, (22)

the minimum number of samples we need to draw, denoted as N, is within the range

ln (1− δ)

ln (1− Zρ2
Zν

(ϕ(
√
Lϵ)− ϕ(−

√
Lϵ))

≤ N ≤ ln (1− δ)

ln (1− Zρ1
Zν

(ϕ(
√
σϵ)− ϕ(−

√
σϵ))

(23)

Proof To simplify our analysis, we assume there exists an integer number N, such that
Pr(∃Xi ∈ X , such that ∥Xi − x∗∥ ≤ ϵ) = δ, when X contains N samples.

The probability of at least one sample lying within an ϵ-ball of x∗ equals to the proba-
bility of all samples are outside the ϵ-ball of x∗, then we have

Pr(∀Xi ∈ X , ∥Xi − x∗∥ > ϵ) = 1− Pr(∃Xi ∈ X , such that ∥Xi − x∗∥ ≤ ϵ)

Pr(∀Xi ∈ X , ∥Xi − x∗∥ > ϵ) = 1− δ

(1− Pr(∥X − x∗∥ ≤ ϵ))N = 1− δ (By i.i.d samples)

N =
ln (1− δ)

ln (1− Pr(∥X − x∗∥ ≤ ϵ))
(24)

Substituting the bounds for Pr(∥X − x∗∥ ≤ ϵ)) from Theorem 6 and Theorem 7 completes
the proof.

2.5 Extension to Non-smooth functions

To extend the analysis for non-smooth cases, we need to address the challenge of non-
smoothness in the objective function f(x). We will use auxiliary functions that approximate
the non-smooth function from above and below, providing bounds for the probability that
a sample drawn from the distribution ν ∝ e−f(x) is close to the global minimizer x∗.



Optimization via Sampling

Figure 4: Objective function with one local minimal at (2,1) and one global minimal at
(3,4)

Setup

Given the non-smooth function f(x), we assume there exist auxiliary functions g1(x) and
g2(x) such that:

f(x) ≥ g1(x) and f(x) ≤ g2(x)

for all x. These auxiliary functions are chosen to be smooth, making the resulting distri-
butions ρ1(x) ∝ e−g1(x) and ρ2(x) ∝ e−g2(x) easier to work with analytically. The idea is to
bound the probability that a sample drawn from ν ∝ e−f(x) is close to the global minimizer
x∗ using these smoother approximations.

2.5.1 Existence of Quadratic Bounds

One crucial assumption is the existence of quadratic bounds on the function f(x). Specifi-
cally, we assume there exist constants σ > 0 and L > 0 such that:

f(x) ≥ f(x∗) +
σ

2
∥x− x∗∥2

f(x) ≤ f(x∗) +
L

2
∥x− x∗∥2

for all x. These conditions imply that the function f(x) is bounded below by a strongly
convex function and above by a smooth quadratic function. The lower bound ensures that
f(x) has a steep enough slope near the global minimizer, while the upper bound ensures
that f(x) does not grow too rapidly, providing control over the behavior of the function.
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Theorem 6 for Non-Smooth Case

Assume there exists a constant σ > 0 such that:

f(x) ≥ f(x∗) +
σ

2
∥x− x∗∥2

Then, we have the upper bound for the probability that a sample from ν ∝ e−f(x) lies
within an ϵ-ball of the global minimizer x∗:

Pr(∥X − x∗∥ ≤ ϵ) ≤ Zρ1

Zν
(Φ(

√
σϵ)− Φ(−

√
σϵ))

where Zν =
∫
e−f(x) dx, Zρ1 =

∫
e−g1(x) dx, and g1(x) = f(x∗) + σ

2 ∥x − x∗∥2. Φ(x) is the
CDF of the standard Gaussian distribution.

Theorem 7 for Non-Smooth Case

Assume f(x) is L-smooth in the sense that:

f(x) ≤ f(x∗) +
L

2
∥x− x∗∥2

Then, we have the lower bound for the probability that a sample from ν ∝ e−f(x) lies within
an ϵ-ball of the global minimizer x∗:

Pr(∥X − x∗∥ ≤ ϵ) ≥ Zρ2

Zν
(Φ(

√
Lϵ)− Φ(−

√
Lϵ))

where Zρ2 =
∫
e−g2(x) dx, and g2(x) = f(x∗) + L

2 ∥x− x∗∥2.

Theorem 8 for Non-Smooth Case

Assume we have a set of i.i.d. samples X = {X1, X2, . . .} drawn from ν ∝ e−f(x), and f(x)
satisfies the conditions of Theorems 6 and 7. Then, the minimum number of samples N
required to guarantee that the probability of at least one sample lying within an ϵ-ball of
x∗ is greater than δ is:

ln(1− δ) ≤ N ln(1− Zρ2

Zν
(Φ(

√
Lϵ)− Φ(−

√
Lϵ)))

ln(1− δ) ≥ N ln(1− Zρ1

Zν
(Φ(

√
σϵ)− Φ(−

√
σϵ)))

Solving for N :

ln(1− δ)

ln(1− Zρ2
Zν

(Φ(
√
Lϵ)− Φ(−

√
Lϵ)))

≤ N ≤ ln(1− δ)

ln(1− Zρ1
Zν

(Φ(
√
σϵ)− Φ(−

√
σϵ)))
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2.5.2 Proof for Theorem 6

Given that f(x) ≥ f(x∗) + σ
2 ∥x− x∗∥2, the auxiliary function g1(x) = f(x∗) + σ

2 ∥x− x∗∥2

is used. The distribution ρ1 ∝ e−g1(x) is Gaussian with mean x∗ and variance 1/σ:

e−g1(x) = e−(f(x
∗)+σ

2
∥x−x∗∥2) = e−f(x∗)e−

σ
2
∥x−x∗∥2

ρ1(x) =

√
σ√
2π

e−
σ
2
∥x−x∗∥2

Thus, the probability X ∼ ν lies within ϵ-ball of x∗ can be upper-bounded by assuming
X ∼ ρ1:

Pr(∥X − x∗∥ ≤ ϵ) ≤ Zρ1

Zν

∫ x∗+ϵ

x∗−ϵ
ρ1(x) dx

Since ρ1(x) is Gaussian: ∫ x∗+ϵ

x∗−ϵ
ρ1(x) dx = Φ(

√
σϵ)− Φ(−

√
σϵ)

Therefore:

Pr(∥X − x∗∥ ≤ ϵ) ≤ Zρ1

Zν
(Φ(

√
σϵ)− Φ(−

√
σϵ))

2.5.3 Proof for Theorem 7

Given that f(x) ≤ f(x∗) + L
2 ∥x− x∗∥2, the auxiliary function g2(x) = f(x∗) + L

2 ∥x− x∗∥2

is used. The distribution ρ2 ∝ e−g2(x) is Gaussian with mean x∗ and variance 1/L:

e−g2(x) = e−(f(x
∗)+L

2
∥x−x∗∥2) = e−f(x∗)e−

L
2
∥x−x∗∥2

ρ2(x) =

√
L√
2π

e−
L
2
∥x−x∗∥2

Thus, the probability X ∼ ν lies within ϵ-ball of x∗ can be lower-bounded by assuming
X ∼ ρ2:

Pr(∥X − x∗∥ ≤ ϵ) ≥ Zρ2

Zν

∫ x∗+ϵ

x∗−ϵ
ρ2(x) dx

Since ρ2(x) is Gaussian: ∫ x∗+ϵ

x∗−ϵ
ρ2(x) dx = Φ(

√
Lϵ)− Φ(−

√
Lϵ)

Therefore:

Pr(∥X − x∗∥ ≤ ϵ) ≥ Zρ2

Zν
(Φ(

√
Lϵ)− Φ(−

√
Lϵ))
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Number of Samples Needed

To ensure that with high probability (at least δ) at least one sample from the i.i.d. set
X = {X1, X2, . . . , XN} lies within an ϵ-ball of x∗, we derive N :
Using the bounds from Theorems 6 and 7:

Pr(∃Xi ∈ X such that ∥Xi − x∗∥ ≤ ϵ) = 1− Pr(∀Xi ∈ X, ∥Xi − x∗∥ > ϵ)

= 1− (1− Pr(∥X − x∗∥ ≤ ϵ))N

To ensure this probability is at least δ:

1− (1− Pr(∥X − x∗∥ ≤ ϵ))N ≥ δ

(1− Pr(∥X − x∗∥ ≤ ϵ))N ≤ 1− δ

N ≥ ln(1− δ)

ln(1− Pr(∥X − x∗∥ ≤ ϵ))

Using the bounds from Theorems 6 and 7:

ln(1− δ)

ln(1− Zρ2
Zν

(Φ(
√
Lϵ)− Φ(−

√
Lϵ)))

≤ N ≤ ln(1− δ)

ln(1− Zρ1
Zν

(Φ(
√
σϵ)− Φ(−

√
σϵ)))

2.6 TV Distance and Probability Bound

Ultimately, we want to show that this measure of distance does converge to the ϵ of the
global minimizer. That is what we will try to establish in this section.

First, recall that the Total Variation (TV) distance between two probability measures
µt and ν on a measurable space (Rd,B) is defined as:

dTV(µt, ν) =
1

2

∫
Rd

|µt(x)− ν(x)| dx

For any measurable set A ∈ B, the TV distance provides an upper bound on the difference
in the probabilities assigned to A by µt and ν:

|µt(A)− ν(A)| ≤ dTV(µt, ν)

Now, consider the specific set Aϵ = {x ∈ Rd : ∥x− x∗∥ ≤ ϵ}, which is the ϵ-ball around the
global minimizer x∗. The probability that a sample Xt ∼ µt lies within this ϵ-ball is:

µt(Aϵ) =

∫
Aϵ

µt(x) dx

The TV distance gives us the following relationship between µt(Aϵ) and ν(Aϵ):

|µt(Aϵ)− ν(Aϵ)| ≤ dTV(µt, ν)

This inequality can be rewritten to express µt(Aϵ) in terms of ν(Aϵ) and the TV distance:

ν(Aϵ)− dTV(µt, ν) ≤ µt(Aϵ) ≤ ν(Aϵ) + dTV(µt, ν)
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2.6.1 Evolution of the TV Distance

Langevin Dynamics (LD) induces a Markov chain with a transition kernel P , and under the
assumptions that allow for contractivity, we have:

dTV(µt+1, ν) ≤ γdTV(µt, ν)

where 0 < γ < 1 is the contraction coefficient.

Iterating this contractive property gives:

dTV(µt, ν) ≤ γtdTV(µ0, ν)

This implies that as t increases, dTV(µt, ν) decreases exponentially, meaning µt becomes
closer to ν in the TV distance.

2.6.2 Bounding the Probability Over Time

Using the relationship between µt(Aϵ) and ν(Aϵ), and substituting the expression for
dTV(µt, ν), we have:

ν(Aϵ)− γtdTV(µ0, ν) ≤ µt(Aϵ) ≤ ν(Aϵ) + γtdTV(µ0, ν)

This inequality provides bounds on the probability µt(Aϵ) that the sample Xt lies within
the ϵ-ball around x∗. As t → ∞, γtdTV(µ0, ν) → 0, so the probability µt(Aϵ) converges to
ν(Aϵ):

lim
t→∞

µt(Aϵ) = ν(Aϵ)

For finite t, the probability can be expressed as:

µt(Aϵ) ≥ ν(Aϵ)− γtdTV(µ0, ν)

This shows that as t increases, the probability that Xt lies within the ϵ-ball around x∗

becomes increasingly close to ν(Aϵ), which is the probability under the target distribution
ν.

3 Discussion

In this section, we’ll discuss why approaching optimization in a stochastic manner could
offer benefits compared to deterministic methods like gradient descent. Additionally, we’ll
highlight some valuable references and potential avenues for further research to refine the
algorithm and enhance its practical utility.

3.1 Stochastic VS Deterministic Optimization

As mentioned before, the LD in (4) can be viewed as deterministic gradient flow plus some
random noise. This raises the question: what are the advantages of solving optimization
problems in a stochastic manner compared to using deterministic gradient flow? We believe
that sampling algorithms can potentially offer three key advantages for optimization:
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Figure 5: Gradient vector fields and initial points

1. Enable an exploit-explore strategy to discover better local optima.

2. Enable parallel computation for acceleration.

3. Faster convergence in terms of total iterations for certain nonconvex optimization.

Exploit-Explore Strategy: Even though we apply deterministic gradient flow since the
initial condition is randomly assigned, the resulting trajectory when running gradient de-
scent can still be viewed as a stochastic process. Moreover, since the algorithm is deter-
ministic, the last iteration XT will always contract to one or several local minimal, and
where it is contracted to is heavily dependent on the distribution of initial guess X0. On
the other hand, LD or another sampling algorithm naturally enables an exploit-explore
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strategy where the Brownian motion explores the surroundings of the current iteration and
the gradient follows to exploit the gradient information of the target distribution. This
automatic exploration makes the sampling algorithm less sensitive to the initial condition,
resulting in finding better local minima for nonconvex objective functions.

We illustrate our idea with a concrete example involving the minimization of a 2-variable
nonconvex objective function exhibiting one local minimum and one global minimum (Fig-
ure 4). We initialize our decision variables randomly from a standard Gaussian distribution
(Figure 5). We then apply both a sampling algorithm and a deterministic algorithm to
each initialized point and obtain their respective last iteration distributions. In Figure 6,
we observe that along the gradient flow, Xt contracts to the local minimum. In contrast,
when running the Unadjusted Langevin Algorithm (ULA), a discrete algorithm for simu-
lating LD, the distribution at the last iteration approaches ν(x), allowing us to escape the
local minimal by selecting the solution that has the minimum target value.

Figure 6: Last iteration distribution of stochastic and deterministic algorithms: In the ULA
(Unadjusted Langevin Algorithm), a discrete algorithm for simulating LD, we observe the
last iteration distribution approaching the target ν, while in gradient descent, it converges
to a local minimum. In the final figure, for each algorithm, we select the samples with the
lowest function value as the output. We observe that ULA successfully finds the global
minimum, while gradient descent becomes trapped in a local minimum.

Parallel Computing: As illustrated in Figure 6, when employing a stochastic algorithm,
the distribution of the last iteration aligns with the induced distribution ν. Conversely, when
applying deterministic gradient flow, the last iteration tends to converge to the same local
minimum. This phenomenon underscores the significance of parallel computing with GPU
for running stochastic algorithms. With stochastic algorithms, we can initialize numerous
different starting points and run them to obtain various last iterations, allowing us to select
the best one. In contrast, for deterministic algorithms, regardless of the initial starting
point, the last iteration is likely to be the same, rendering parallel computing meaningless
in such cases.

Faster convergence: In general, finding the global minimum of a nonconvex function
can be an NP-hard problem. In a study by (Ma et al., 2019), the authors investigated
a class of nonconvex optimization problems and observed that the number of iterations
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required to find the global minimum scales exponentially with the dimensionality of the
decision variables when using a certain class of optimization algorithms. However, when
employing MCMC sampling algorithms, the number of iterations scales linearly instead.
This highlights the potential advantage of sampling algorithms in addressing nonconvex
optimization problems, particularly in high-dimensional spaces. This finding suggests that
sampling algorithms may even be faster in terms of the total number of iterations required
for convergence.

3.2 Related Works

The concept of optimization via sampling has been around for some time. An early al-
gorithm, simulated annealing, precisely embodies this idea for finding global optima in
nonconvex optimization problems. In simulated annealing, the target distribution e−βf(x)

is sequentially addressed by introducing a positive ”temperature” coefficient β > 0, which
controls how concentrated the last iteration is around the global minimum x∗. Equation (23)
indicates that the minimum number required to achieve a certain probability threshold for
the last iteration to be close to the global minimizer scales with the smoothness coefficient,

assuming
Zρ2
Zν

remains roughly the same.

A closely related work to ours may be (Xu et al., 2017), where they also analyze the
global convergence of Langevin dynamics-based algorithms for nonconvex optimization.

While our convergence analysis primarily emphasizes the mixing time, other studies,
such as those by (Zhang et al., 2017; Raginsky et al., 2017)delve into the hitting time of
sampling algorithms, which directly measures the time it takes for a sampling algorithm to
reach the minimum of the objective function.

Yet, this article serves as a preliminary exploration into solving optimization via sam-
pling. Moving forward, an important question to address is which specific sampling al-
gorithms are most suitable for practical nonconvex optimization tasks, such as those en-
countered in robotics. With advancements in both sampling algorithms and hardware
capabilities, there’s potential for sampling-based approaches to offer significant advantages
in optimizing complex systems.
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