
Convergence of OMD and SMD

On the Convergence of Online Mirror Descent(OMD) and
Stochastic Mirror Descent(SMD)

Nahom Seyoum nahom.seyoum@yale.edu
Department of Statistics
Yale University

Haoxiang You haoxiang.you@yale.edu

Department of Mechanical Engineering and Material Science

Yale University

Editor: Seyoum, You

Keywords: Online Mirror Descent, Variational Coherence, Quasi Convex Optimization

1 Introduction

Since its genesis in 1983, mirror descent has been particularly popular as it was able to
weather some of the pitfalls associated with the traditional gradient descent that preceded
it. It did this by adapting to the ”geometry of the problem” through introducing a new
measure of distance known as the Bregman divergence. Recent scholarship has started
to concern itself with specific classes of problems associated with mirror descent as the
applications have been very plenty. In this paper, we will be looking at two different types
of Mirror Descent algorithms i.e. the Online Mirror Descent and the stochastic mirror
descent to establish convergence rates for assessments of effectiveness and robustness.

To do so, we will be surveying the following two papers:

1. Convergence of online mirror descent by Lei, Yunwen and Ding-Xuan Zhou (Lei and
Zhou, 2020)

2. On the convergence of mirror descent beyond stochastic convex programming by
Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, Peter
Glynn (Zhou et al., 2018)

1.1 Motivation for Online Learning

In machine learning problems, our goal is to find an optimal set of parameters represented
by the variable (usually referred as weights) w ∈ Rd. This optimization aims to minimize
the empirical loss, which quantifies the discrepancy between the model’s predictions and
the actual outcomes observed in the data. Mathematically, we express this objective as:

minimize
w

Ez[f(w, z)], (1)

where z represents data drawn from some underlying distribution, for instance, in the
context of image classification tasks, z consists of pairs (x, y), where x denotes an image
and y denotes the corresponding label.

1

Seyoum, You

A common way to solve the problem (1) is by using stochastic gradient descent (SGD)
in the form of

wt+1 = wt − αtgt. (2)

Here gt ∈ ∂wf(wt, zt) denotes the sub-differential of f with respect to w. Because f is
dependent on the data zt, which is available after a particular sample is drawn from the
distribution. The SGD algorithm can be viewed as an online learning problem to minimize
regret define following

Rτ (w) = [
τ∑
t=1

ft(wt)]−min
w

[
τ∑
t=1

ft(w)], (3)

where ft(wt) = f(wt, zt).
The interplay between online learning and optimization algorithms like SGD serves as

a driving force for the analytical study conducted in this project.

1.2 Motivation for Online Mirror Descent

Online Mirror Descent (OMD) algorithm is ultimately an extension of the classical online
gradient descent. The OMD algorithm uses a mirror map Ψ, instead of the simple quadratic
map Ψ2, to capture more complex data geometric structures beyond those assumed in
Hilbert spaces. The OMD operates by updating the sequence of parameters {wt}t starting
from an initial vector w1 using the update rule:

∇Ψ(wt+1) = ∇Ψ(wt)− ηt∇w[f(wt, zt)], (4)

where ηt is the step size at iteration t. This formulation allows the algorithm to adaptively
adjust the parameters based on the structure of the data and the form of the loss function,
effectively navigating the parameter space to minimize the loss.

Remark 1 The above motivation ultimately drives the formulations used in the paper we
are evaluating but OMD also comes with a suite of benefits. For example, OMD is partic-
ularly useful in high-dimensional settings where data may be sparse. Traditional methods
might struggle with the curse of dimensionality, where distances between points become mis-
leadingly uniform. The mirror map can be chosen to emphasize important dimensions and
ignore irrelevant ones, thus preserving computational resources and enhancing the focus on
significant attributes.

2 First Paper

The first paper titled ” investigates OMD under strongly convex, differentiable, and smooth
settings. Here necessary and sufficient conditions are presented in terms of the step size
sequence {ηt}t for the convergence of an OMD algorithm with respect to the expected
Bregman distance induced by the mirror map. Although the original paper relies on a
linear rate step size decay (ηt = η0

t+1) to establish its theoretical proofs, our numerical
experiments reveal a more favorable convergence rate when employing a step size scaling

2

Convergence of OMD and SMD

inversely proportional to the square root of the number of iterations (ηt = η0√
t+1

). This

step-size scheduling result is consistent with the choices we’ve encountered for subgradient
descent and mirror descent in our classes.

For the remainder of this section, we will introduce the setup and primary theoretical
findings of the first paper. Subsequently, we will perform a numerical experiment based on
these theoretical results. Finally, we will conclude our examination of the first paper with
a discussion. Detailed proofs and code can be found in Appendix A. The extension of these
results to more general settings, such as non-convex online mirror descent, will be explored
in the study of the second paper.

2.1 Paper Setup and Assumptions

Here, we will outline the problem setup and main assumptions made in the first paper.
Within the scope of our study, we assume that the mirror map Ψ is differentiable, σΨ-
strongly convex with respect to some norm | · |, and LΨ-strongly smooth. Additionally,
we assume that the objective function f(w, z) is a convex function and L-strongly smooth
function with respect to w. Moreover, we assume there exists an σF > 0 such that

⟨w∗ − w,∇F (w∗)−∇F (w)⟩ ≥ σFDΨ(w
∗, w),∀w ∈ W. (5)

This is hold when the target f(w, z) is LΨσF
2 -strongly convex respect to w for any z. To see

this, we have

⟨w∗ − w,∇F (w∗)−∇F (w)⟩ ≥ (by convexity)
LΨσF

2
∥w∗ − w∥2 (6)

≥ (by smoothness)
LΨσF

2

2

LΨ
DΨ(w

∗, w) (7)

= σFDΨ(w
∗, w) (8)

Next, we introduce assumptions regarding the data distribution. In many machine
learning applications, the data z = (x, y) comprises pairs of inputs and corresponding
labels. In our study, we assume that the input x has a bounded dual norm, denoted
as supx∈X |x|∗ < ∞. Moreover, we assume that the label y has a bounded second-order
moment, represented as EZ [Y 2] < ∞, and that the covariance matrix CX = EZ [XX⊤] is
positive definite.

The paper then separates the discussion based on the variance defined by

inf
w∈W

EZ [|Y − ⟨w,X⟩|∥X∥∗]. (9)

The problem is classified as having positive variance if the quantity mentioned above is
positive, and as having zero variance when this quantity equals zero. In the scenario of zero
variance, employing a constant step size is adequate to ensure almost sure convergence and
a linear rate of convergence can be achieved. Conversely, in the case of positive variance,
it becomes necessary to decay the step size to achieve convergence, albeit at a slower rate
of O(1

T). Intuitively, zero variance indicates that the data can be accurately represented
by the linear mapping y = ⟨w∗, x⟩ for some weight vector w∗. Conversely, the problem
exhibits positive variance when either the mapping cannot be accurately described solely
by a linear function, or there is some degree of noise present in the data distribution, i.e.
y = ⟨w∗, x⟩+ σ, where σ is some random noisy.

3

Seyoum, You

2.2 Main Theoretical Results

Here we will present the main theoretical results separate for the positive variance case and
zero variance case.

Theorem 2 Assume infw∈W EZ [|Y − ⟨w,X⟩|∥X∥∗] > 0, then for the OMD algorithm 4
limt→∞ Ez1,...,zt−1 [DΨ(w

∗, wt)] = 0 if and only if.

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt =∞ (10)

Moreover: (a) If limt→∞ ηt = 0, then there exist some constants t0 ∈ N and C̃ > 0 such
that

Ez1,...,zT−1 [DΨ(w
∗, wT)] ≥

C̃

T − t0 + 1
, ∀T ≥ t0. (11)

(b) If the step size sequence takes the form ηt =
4

(t+1)σF
, then

Ez1,...,zt−T [DΨ(w
∗, wT)] = O(

1

T
). (12)

Notice, in the above theorem, the step size sequence decays linearly with respect to the
iteration number. However, such a decay schedule to choose for the theorem to work, in
our later numerical experiment, we show a faster converge rate can be achieved if the decay
of the step size is proportional to the square root of the iteration number, i.e. ηt =

η0√
t+1

.

Theorem 3 Assume infw∈W EZ [|Y − ⟨w,X⟩|∥X∥∗] = 0, then for the OMD algorithm 4
limt→∞ Ez1,...,zt−1 [DΨ(w

∗, wt)] = 0 if and only if.

∞∑
t=1

ηt = 0 (13)

Moreover, if we set step size η < σΨ
2L , then we have

(1− 2σ−1
Ψ Lη)TDΨ(w

∗, w1) ≤ Ez1,...,zt−1 [DΨ(w
∗, wt)] ≤ (1− 2−1σF η)

TDΨ(w
∗, w1) (14)

2.3 Numerical Experiment

In this subsection, we undertake a numerical experiment to validate the theoretical re-
sults outlined in the first paper. Our focus is on minimizing an empirical loss within the
probability simplex, which is defined as follows:

minimize
w∈∆d

F (w) = EX,Y [f(w,X, Y)] = EX,Y [∥⟨w,X⟩ − Y ∥22], (15)

4

Convergence of OMD and SMD

where X ∼ N (0, I), and Y = ⟨w∗, X⟩ + σZ, with Z ∼ N (0, 1). Here, σ is a constant
controlling the level of noise in the system. We encounter a zero-variance problem when
σ = 0 and we use σ = 0.2 to construct a positive-variance example. We use KL divergence
as Bregman distance and the Ψ is the negative entropy.

In our evaluation under the zero-variance scenario, we compare the performance of online
mirror descent with that of the projected gradient descent method, both utilizing a constant
step size as recommended in the paper. We observe that the KL divergence between the
current iteration and the minimizer decreases roughly linearly in log space. Interestingly, in
this setting, online mirror descent converges more quickly than projected gradient descent
in terms of the KL distance, especially when adapting a larger step size.

Figure 1: Convergence of online mirror descent under zero-variance case

Figure 2: Convergence of online mirror descent under positive-variance case

Next, we assess the convergence of online mirror descent under a positive variance set-
ting. We investigate the convergence behavior of online mirror descent with various step
size decay schedules, including:

1. A constant step size.

5

Seyoum, You

2. Step size decays linearly with the iteration, i.e., ηt =
η0
t+1 , as used in the paper to

achieve O(1
T) convergence.

3. Step size decay with the square root of the iteration, i.e., ηt =
η0√
t+1

, a decay schedule

commonly employed in subgradient descent and mirror gradient descent in our classes.

We observed that the KL distance between the current iteration and the global minimizer
fluctuated after a certain number of iterations. However, we noticed that w converged to
w∗ in terms of the KL distance when employing a step size decay proportional to the square
root of the iteration. Conversely, when applying the step size decay linearly with iteration as
described in the paper, the KL distance increased initially and then converged very slowly.
This is not contradict to the paper’s theoretical results, however, as the KL distance is not
a strongly-smooth distance required by the theoretical proof.

2.4 Discussion

The first paper studies the convergence of OMD under strongly convex and smooth settings.
The achieved analysis on the one-step progress of the OMD algorithm and established a
lower and upper bound. A necessary and sufficient condition for the convergence is given.

However, the paper has several strict assumptions, for example, they assume the Ψ is
strongly smooth. For many applications such as when we do optimization under probability
simplex and use KL as Bregman distance, the smooth assumption does not hold anymore.
Indeed, the paper mention examples of Ψ as some p-norm, where 1 < p ≤ 2.

Indeed, in the numerical test, we do observe convergence in terms of the KL distance
when we apply a decay step size in online mirror descent. This suggests that we might be
able to eliminate the smoothness assumptions in certain cases. Additionally, we notice that
a better convergence rate can be achieved when employing a step size decay proportional to
the square root of the number of iterations, as opposed to decaying linearly as mentioned in
the paper. We will explore more general cases when some smooth and convexity conditions
do not in our study of the second paper.

3 Second Paper

3.1 Motivation and Previous Results

Historically, the convergence properties of SMD have been well-established in convex set-
tings, with seminal contributions by Nemirovski and Yudin laying the groundwork. In non-
convex scenarios, however, the convergence of SMD’s last iterate has only recently been
explored. Studies by Shamir and Zhang, and Nedic and Lee, have shown that in strongly
convex environments, the last iterate of SMD can achieve convergence rates comparable to
those of its ergodic average.

Further investigations into non-convex problems, such as those by Jiang and Xu on
variational inequalities and phase retrieval, demonstrate SMD’s ability to converge to global
optima under certain conditions. Moreover, research by Ghadimi and Lan indicates that
employing randomized stopping times with SGD can lead to convergence at critical points on
average in non-convex settings. These findings suggest that while the convergence behavior

6

Convergence of OMD and SMD

of SMD in non-convex programs is less understood, recent results are promising, pointing
towards effective strategies for approaching these complex optimization landscapes.

3.2 Problem Setup

In many practical situations, optimization problems involve decision-making under uncer-
tainty. One common approach to addressing such problems is to consider the expected
performance over some uncertainty characterized by a probability distribution. The follow-
ing outlines a stochastic optimization framework where the goal is to minimize an expected
objective function subject to certain constraints:

minimize f(x)

subject to x ∈ X,

where the objective function f(x) is defined by the expectation:

f(x) = E[F (x;ω)],

Here, F represents a stochastic objective function mapping from X ×Ω→ R, with Ω being
a complete probability space characterized by (Ω,F ,P).

For the optimization problem (Opt), they establish two key regularity assumptions nec-
essary for the analysis:

Assumption 1: The function F (x, ω) is continuously differentiable with respect to x for
almost every outcome ω in Ω. This assumption ensures that the derivative with respect to
x exists and varies smoothly, except possibly on a set of probability zero. These smoothness
assumptions can be relaxed but they contend that it is ”cumbersome for analysis”.

Assumption 2: The gradient of F , with respect to x, is uniformly bounded in the L2

norm. Specifically, we assume that:

E[∥∇F (x;ω)∥2] ≤ V 2,

for all x ∈ X and some finite constant V ≥ 0. This condition implies that the expected
square of the norm of the gradient does not exceed V 2, which controls the variability
and ensures stability in the optimization process. It also holds trivially if F is uniformly
Lipschitz.

3.3 Variational Coherence and Definitions of Quasi Convexity

Variational coherence (VC) is a condition that establishes a geometric and analytical struc-
ture in the space of feasible solutions for optimization problems. This condition, as defined
in:

⟨∇f(x), x− x∗⟩ ≥ 0,

states that the gradient of the objective function f at any point x forms a non-negative
angle with the vector pointing towards any optimal point x∗. This geometric interpretation
is crucial because it aligns with the principle of gradient methods, where the direction of the

7

Seyoum, You

gradient points towards the steepest ascent and, by negation, the descent direction indicates
the path towards local minima in optimization landscapes.
In the context of convex optimization, if f is convex and ∇f is monotone, then:

⟨∇f(x)−∇f(x0), x− x0⟩ ≥ 0 for all x, x0 ∈ X.

By the first-order optimality conditions, we have:

⟨f(x∗), x− x∗⟩ ≥ 0 for all x ∈ X.

Through monotonicity:

⟨∇f(x), x− x∗⟩ ≥ ⟨∇f(x∗), x− x∗⟩ ≥ 0 for all x ∈ X,x∗ ∈ X∗.

By convexity, equality in the above holds if and only if x ∈ X∗. Thus, convex programs
inherently satisfy the (VC) condition.
For quasi-convex objectives, the analysis extends:

f(x0) ≤ f(x) =⇒ ⟨∇f(x), x0 − x⟩ ≤ 0.

3.4 Algorithm

Algorithm 1 Stochastic Mirror Descent (SMD)

Require: Mirror map Q : Y → X; step-size sequence {γn > 0}∞n=1

1: Y ← choose Y ∈ Y ≡ V ∗ ▷ Initialization
2: for n = 1, 2, . . . do
3: X ← Q(Y) ▷ Set state
4: Draw ω ∈ Ω ▷ Gradient sample
5: v̂ ← −∇F (X;ω) ▷ Get oracle feedback
6: Y ← Y + γnv̂ ▷ Update score variable
7: end for
8: return X ▷ Output

3.5 Intuition and General Insight

SMD differentiates from deterministic optimization algorithms by directly using stochastic
gradients, which are approximations of the true gradients derived from samples or simula-
tions. This direct use of noisy gradients allows the algorithm to adapt to scenarios where
only imperfect information is available, addressing the variability in the optimization path
due to the randomness of the data.

Instead of operating directly on the decision variables, SMD works in the dual space.
The dual space’s properties to manage constraints and problem geometry more efficiently as
it does a good job of transforming complex constraints into simpler forms which generally
translates to smoother processes.

The mirror map Q is essential for linking updates in the dual space back to the primal
space, where the actual decision variables are situated. After updating the dual variables

8

Convergence of OMD and SMD

(score variable Y), Q translates these adjustments back to the primal space as new pointsX.
This ensures that updates maintain the structural and constraint integrity of the original
problem.

Ultimately, SMD improves robustness by averaging the effects of stochastic gradients
over time. This method smooths out the noise inherent in gradient estimates through
continuous updates of the dual variable, followed by re-mapping to the primal space. Such
averaging acts as a noise-dampening mechanism, aiding the algorithm in converging towards
a robust solution despite the stochastic nature of the data.

Figure 3: Schematic representation of the Stochastic Mirror Descent (Algorithm 1).

3.6 Global Convergence

Ultimately we are interested in the convergence properties of this algorithm. In this section,
we will provide a sketch of the global convergence proof.

We start by letting x∗ be a minimum point of the optimization problem (Opt), and
define Fn = F (x∗, Yn), where Yn represents a sequence of random variables influenced by
the iterations of the SMD algorithm.

The function Fn is updated according to the SMD algorithm, leading to the next step:

Fn+1 = F (x∗, Yn+1) = F (x∗, Yn + γnv̂n)

Using the properties of the function F and the update mechanism, we can write:

Fn+1 ≤ Fn + γnh(v̂n, Xn − x∗) +
γ2n
2
K∥v̂n∥2

where v̂n represents the gradient estimate and K is a constant from the Lipschitz con-
dition.

9

Seyoum, You

Because Yn is predictable with respect to the sigma-algebra generated by the past, Fn is
adapted to this filtration. Taking conditional expectations and leveraging the martingale
properties, the inequality becomes:

E[Fn+1|Fn] ≤ Fn +
γ2n
2
KV 2

where V represents a bound on the expected square of the gradient norm, and Fn denotes
the filtration up to step n.

Applying Gladyshev’s Lemma (Lemma 4.3, See Appendix), which deals with nonnegative
random variables where the expected increment is controlled by a summable series, given
the setup:

E[an+1|a1, . . . , an] ≤ (1 + δn)an + ϵn

with
∑

δn < ∞ and
∑

ϵn < ∞, and an = Fn in our case, the conditions of the lemma
are satisfied due to the boundedness of γ2n.

Using the lemma, Fn converges almost surely to some finite limit F∞, and since Fn measures
the discrepancy at x∗, this implies F (x∗, Yn)→ 0. Consequently, Xn = Q(Yn) converges to
x∗ almost surely, where Q represents the projection or mapping used in the SMD, confirming
that Xn approaches a minimum point of (Opt).

3.7 Local Convergence

In this section, our goal is to extend the convergence analysis of the previous section to
account for optimization problems that are only “locally” coherent. In the paper, they are
defined as follows.

Let x∗ be a local minimizer within C, the coherent set under consideration. Define the
sequence {Xn} as the iterates generated by the algorithm starting from X1 ∈ U , an open
neighborhood of x∗. Assume {γn} is the step-size sequence.

Consider the stochastic process:

ξn = ⟨∇f(Xn)−∇F (Xn;ωn), Xn − x∗⟩

Summing the martingale sequence given by γnξn and recognizing the submartingale behavior
of the squared gradient norms, we decompose the error into two parts:

Martingale term: Sn =

n∑
k=1

γkξk,

Submartingale term: Rn =

n∑
k=1

γ2k∥vk∥2.

By applying Doob’s maximal inequality, we control both terms as follows:

P

(
sup
k≤n

Sk ≥ ϵ

)
≤ δ

2
, P

(
sup
k≤n

Rk ≥ ϵ

)
≤ δ

2
.

10

Convergence of OMD and SMD

The conditions of the inequalities are satisfied through careful selection of {γn}, ensuring∑∞
n=1 γ

2
n is sufficiently small.

To guarantee convergence, we combine the bounds on the martingale and submartingale
sequences to conclude:

P

(
sup
n

max{Sn, Rn} ≤ ϵ

)
≥ 1− δ.

Given X1 starts in U , the function F (x∗, Y1) begins below a threshold ϵ. By the established
inequalities and the properties of the processes, the iterates {Xn} are guaranteed to remain
close to x∗ and within the neighborhood U with high probability.

Using the recursive relation and the control over Sn and Rn, we conclude that {Xn}
converges to x∗ in U with at least probability 1 − δ. This follows by ensuring each iterate
does not exceed the bounds of the defined errors, leading to convergence to the minimizer.

3.8 Numerical Experiments

Ultimately, the paper makes a lot of significant claims about SMD being able to glob-
ally convergence on non-convex problems. In the paper, they provide various numerical
experiments to prove this.

In this section, we will try to see if the SMD converges on the infamous Rosenbrock
setup.

The setup is ultimately a quadratic:

f(x) =
1

2

d∑
i,j=1

Qijxixj +
d∑
i=1

bixi

where Q is a negative-definite matrix. This setup is interesting because, despite Q being
negative-definite—which would typically suggest a concave landscape—when combined with
the constraints of the unit simplex, the problem does not simply remain trivial. It also has
a well defined global minimum we can hearken to.

Furthermore, the function’s relationship to the maximum weight clique problem, known
for its computational complexity, lets us test SMD under challenging conditions. If SMD
can quickly find reasonable solutions here, it’s a good sign that it can handle other complex
problems effectively.

We ran the experiments on the two dimensional Rosenbrock and the three dimensional
Rosenbrock.

11

Seyoum, You

Figure 4: Stochastic Convergence on 2 Dimensional Rosenbrock

Figure 5: Stochastic Convergence on 3 Dimensional Rosenbrock

12

Convergence of OMD and SMD

In Figure 4, the trajectory from the starting point on the left towards the global min-
imum at (1,1) is smooth and direct. This indicates that the algorithm effectively handles
the Rosenbrock function’s notorious narrow valley. The path almost hitting the mark at
(1,1) suggests that the algorithm isn’t just wandering around but is pretty targeted in its
approach.

Moving up a dimension in Figure 5, things get more complex with the added dimension,
yet the algorithm still seems to hold its own. The trajectory here meanders towards a low
point, and the color gradient from blue to red nicely illustrates the function values dropping
along the way. This behavior is encouraging because it shows that the algorithm can scale
up and still perform well even as the problem space expands.

We also wanted to show the convergence rates so we decided to include the rates in the
2 dimensional case which, as it turns out, were incredibly encouraging.

Figure 6: Convergence of SMD on Rosenbrock

3.9 Discussion and Further Developments

The convergence behavior of SMD in non-convex scenarios, as presented in the second
paper, highlights a significant advancement in understanding how stochastic methods can
adapt to complex optimization landscapes. Unlike traditional gradient descent methods that
may falter in such environments due to local minima and saddle points, SMD incorporates
randomness in a manner that potentially allows it to escape these traps.

Our numerical experiments with the Rosenbrock function fundamentally agree with this
point. SMD not only adapted its approach in the face of a non-trivial, non-convex landscape
but also demonstrated robustness by converging towards the global minimum effectively.

13

Seyoum, You

However, the findings also raise some contentions, particularly around the optimality
and efficiency of SMD in broader non-convex settings. The reliance on specific step-size
schedules and initial conditions may limit the general applicability and scalability of the
approach and further research should definitely be done. Additionally, while the Rosenbrock
function serves as a useful testbed due to its well-understood properties and challenging
topology, real-world applications often present even more complex landscapes and higher-
dimensional spaces that may not be adequately represented by this or similar benchmark
functions. Extending the analysis to include a wider variety of non-convex functions, would
lead to more generative points of insight.

14

Convergence of OMD and SMD

References

Yunwen Lei and Ding-Xuan Zhou. Convergence of online mirror descent. Applied and
Computational Harmonic Analysis, 48(1):343–373, 2020. ISSN 1063-5203.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and Peter
Glynn. On the convergence of mirror descent beyond stochastic convex programming,
2018.

15

Seyoum, You

Appendix A. First paper theoretical proof and codes

A.1 Proof sketch of the theorem

In this section, we will provide a proof sketch of the main results from the first paper. We
will strive to formulate our proof sketch based on our understanding of the original paper.
However, there may be certain lemmas, conditions, and propositions that we have not fully
comprehended yet. Therefore, we will precisely follow the original paper to prove those
parts.

We first are going to prove Theorem 2. We want to show the necessity i.e. limt→∞ Ez1,...,zt−1 [DΨ(w
∗, wt)] =

0 implies condition (10). By the σΨ-strong convexity of Ψ, we have ∥w∗−wt∥2 ≤ 2
σΨ

DΨ(w
∗, wt).

So the condition limt→∞ Ez1,...,zt−1 [DΨ(w
∗, wt)] = 0 implies the limt→∞ Ez1,...,zt−1 [∥w∗ −

wt∥2] = 0. Then, by continuity of ∇Ψ (embed with Lψ-smooth assumption) we have

lim
t→∞

Ez1,...,zt−1 [∥∇Ψ(wt)−∇Ψ(w∗)∥∗] = 0 (16)

By OMD algorithm (4), we have

ηt∥∇w[f(wt, zt)]∥∗ = ∥∇Ψ(wt)−∇Ψ(wt+1)∥∗ ≤ ∥∇Ψ(wt)−∇Ψ(w∗)∥∗ + ∥∇Ψ(wt+1)−∇Ψ(w∗)∥∗
(17)

Due to positive variance, we have infw∈W EZ [∥∇w[f(w,Z)]∥∗] > 0. Denote σ = infw∈W EZ [∥∇w[f(w,Z)]∥∗],
then by taking expectation of equation (17) respect to zt, yields

ηtσ ≤ ηtE[∥∇w[f(wt, zt)]∥∗] ≤ ∥∇Ψ(wt)−∇Ψ(w∗)∥∗ + Ezt [∥∇Ψ(wt+1)−∇Ψ(w∗)∥∗] (18)

ηtσ ≤ Ez1,...zt−1 [∥∇Ψ(wt)−∇Ψ(w∗)∥∗] + Ez1,...,zt [∥∇Ψ(wt+1)−∇Ψ(w∗)∥∗]. (19)

Since left hand goes to zero as t→∞ and σ > 0, we have limt→∞ ηt = 0.
We then try to prove

∑∞
t=1 ηt =∞. We first introduce the following lemma

Lemma 4 The following identity holds for t ∈ N

Ezt [DΨ(w
∗, wt+1)]−DΨ(w

∗, wt) = ηt⟨w∗ − wt,∇F (wt)⟩+ Ezt [DΨ(wt, wt+1)]. (20)

Proof By the points lemma of Bregman distance, we have the following identity

DΨ(w
∗, wt+1)−DΨ(w

∗, wt) (21)

=−DΨ(wt+1, wt) + ⟨w∗ − wt+1,∇Ψ(wt)−∇Ψ(wt+1)⟩ (22)

=−DΨ(wt+1, wt) + ⟨w∗ − wt,∇Ψ(wt)−∇Ψ(wt+1)⟩+ ⟨wt − wt+1,∇Ψ(wt)−∇Ψ(wt+1)⟩
(23)

=−DΨ(wt+1, wt) + ηt⟨w − wt,∇w[f(wt, zt)]⟩+ ⟨wt − wt+1,∇Ψ(wt)−∇Ψ(wt+1)⟩ (24)

=DΨ(wt, wt+1) + ηt⟨w − wt,∇w[f(wt, zt)]⟩ (25)

Taking expectations Ezt on both sides and noting that wt is independent of zt, we have the
stated identity in the lemma.

By L smoothness of F and σΨ-strongly convex of Ψ, we have

⟨w∗ − wt,∇F (wt)⟩ ≥ −L∥w∗ − wt∥2 ≥ −
2L

σΨ
DΨ(w

∗, wt). (26)

16

Convergence of OMD and SMD

Then we apply the lemma 4 and take expectations on both sides give

Ez1,...zt [DΨ(w
∗, wt+1)] ≥ (1− aηt)Ez1,...,zt−1 [DΨ(w

∗, wt)] + Ez1,...,zt [DΨ(wt, wt+1)], (27)

where a = 2Lσ−1
Ψ .

Since limt→∞ ηt = 0, we cab find some integer t0 ∈ N such that ηt ≤ (3a)−1 for t ≥ t0.
Noting 1 − αη ≥ exp−2αη when η ∈ (0, (3a)−1] and Ez1,...,zt [DΨ(wt, wt+1)] ≥ 0, we have
following

Ez1,...,zt [DΨ(w
∗, wt+1)] ≥ exp (−2aηt)Ez1,...zt−1 [DΨ(w

∗, wt)], ∀t ≥ t0. (28)

Applying this inequality iteratively yields

Ez1,...,zT [DΨ(w
∗, wT+1)] ≥

T∏
t=t0+1

exp (−2aηt)Ez1,...,zt0 [DΨ(w
∗, wt0+1)]. (29)

= exp (−2α
T∑

t=t0+1

)ηtEz1,...,zt0 [DΨ(w
∗, wt0+1)]. (30)

We have Ez1,...,zt0 [DΨ(w
∗, wt0+1) > 0 and limT→∞ Ez1,...,zT [DΨ(w

∗, wT+1)] = 0. Hence∑∞
t=1 ηt =∞.
We then will prove the sufficiency. Here, we first introduce two lemmas from an original

paper without further proof:

Lemma 5 Let g : Rd → R be continuous and convex. Let β > 0. Then g is β-strongly
convex with respect to the norm ∥ · ∥ if and only if g∗ is 1

β -strongly smooth with respect to
the dual norm ∥ · ∥∗.

If g is differentiable and strongly convex, then there holds

Dg(w, w̃) = Dg∗(∇g(w̃),∇g(w)), ∀w, w̃ ∈ W. (31)

Lemma 6 Let α ∈ (0, 1] and g : W → R be a differentiable and convex function. If there
exists some constant L > 0 such that

Dg(w, w̃) ≤
L

1 + α
∥w − w̃∥1+α, ∀w, w̃ ∈ W, (32)

then we have

2L− 1
αα

1 + α
∥∇g(w)−∇g(w̃)∥

1+α
α

∗ ≤ ⟨w − w̃,∇g(w)−∇g(w̃), ∀w, w̃ ∈ W. (33)

. By lemma 5, and the σΨ-strong convexity of Ψ, we have

Ezt
[
DΨ∗(∇Ψ(wt+1),∇Ψ(wt))

]
≤ 1

2σΨ
Ezt
[
∥∇Ψ(wt+1)−∇Ψ(wt)∥2∗

]
=

η2t
2σΨ

Ezt
[
∥∇w[f(wt, zt)]∥2∗

]
. (34)

17

Seyoum, You

We bound
[
∥∇w[f(wt, zt)]∥2∗

]
by 2

[
∥∇w[f(wt, zt)]−∇w[f(w∗, zt)]∥2∗

]
+2
[
∥∇w[f(w∗, zt)]∥2∗

]
.

Then we apply Lemma 6 with w = w∗, w̃ = wt, g = f(·, zt) and α = 1. By the L-strong
smoothness of f(·, z), we know that

Ezt
[
∥∇w[f(wt, zt)]−∇w[f(w∗, zt)]∥2∗

]
≤ LEzt

[〈
wt − w∗,∇w[f(wt, zt)]−∇w[f(w∗, zt)]

〉]
(35)

= L⟨w∗ − wt,∇F (w∗)−∇F (wt)⟩. (36)

Then by lemma 4 we have

Ezt [DΨ(w
∗, wt+1)]−DΨ(w

∗, wt) ≤

−
(
1− Lηt

σΨ

)
ηt⟨w∗ − wt,∇F (w∗)−∇F (wt)⟩+

η2t
σΨ

Ezt
[
∥∇w[f(w∗, zt)]∥2∗

]
. (37)

Since limt→∞ ηt = 0, there exists some t1 ∈ N such that L
σΨ

ηt ≤ 1
2 for t ≥ t1 which

implies

Ezt [DΨ(w
∗, wt+1)]−DΨ(w

∗, wt) ≤

− ηt
2
⟨w∗ − wt,∇F (w∗)−∇F (wt)⟩+

η2t
σΨ

Ezt
[
∥∇w[f(w∗, zt)]∥2∗

]
. (38)

With the condition (5), we have

Ezt [DΨ(w
∗, wt+1)] ≤ DΨ(w

∗, wt)−
ηtσF
2

DΨ(w
∗, wt) + bη2t , (39)

where b = 1
σΨ

EZ [∥∇w[f(w∗, Z)]∥2∗]. By taking expectation, we have

Ez1,...,zt [DΨ(w
∗, wt+1)] ≤ (1− ηtσF

2
)Ez1,...,zt−1 [DΨ(w

∗, wt)] + bη2t . (40)

Let At = Ez1,...,zt−1 [DΨ(w
∗, wt)], we have

At+1 ≤ (1− ηtσF
2

)At + bη2t (41)

We now try to show limt→∞At = 0. We claim the following proposition

Proposition 7 For any γ ∈ (0, 1) the following arguments hold when we have condi-
tion (10)

sup t ∈ N : At ≤ γ =∞ (42)

Proof We prove this by contradiction. Since limt→∞ ηt = 0, we have

ηt ≤
σFγ

4b
, ∀t ≥ tγ (43)

Suppose the above argument does not hold, which implies there exists t′γ ≥ tγ such that

At ≥ γ,∀t ≥ t′γ . (44)

18

Convergence of OMD and SMD

Additional with the inequality (41), we have

At+1 ≤ (1− ηtσF
2

)At + bη2t (45)

= bη2t −
ηtσF
2

At +At (46)

≤ b
σFγ

4b
ηt −

ηtσF
2

At +At (47)

≤ σF ηt
4

At −
ηtσF
2

At +At (48)

≤ −σF ηt
4

At +At (49)

≤ −σF ηt
4

γ +At (50)

By applying the above inequality iteratively, we obtain

AT ≤ −
σFγ

4

T∑
t=t′γ+1

ηt +At′γ (51)

Then we have

lim
T→∞

AT ≤ At′γ −
σFγ

4
lim
T→∞

T∑
t=t′γ+1

ηt = −∞, (52)

which contradicts to the fact

At ≥ γ,∀t ≥ t′γ . (53)

Hence, we complete the proof.

Now we are going to prove the sufficient condition through induction. With proposition 7,
there exists tγ” > tγ , such that At ≤ γ,∀t > tγ”.

Then

At+1 ≤ bη2t −
ηtσF
2

At +At (54)

≤ max

{
b(
σFγ

4b
)2 −

σ2
F

8b
γAt +At, At

}
(55)

≤ max

{
(1−

σ2
Fγ

8b
)At +

σ2
Fγ

2

16
, At

}
(56)

≤

max
{
σ2
F γ

2

16b , At

}
if 1− σ2

F γ
8b < 0

max
{
γ − σ2

F γ
2

16b , At

}
if 1− σ2

F γ
8b ≥ 0

(57)

Let γ ∈ (0, 8b
σ2
F
], then we always have At+1 ≤ max

{
γ − σ2

F γ
2

16b , At

}
≤ γ. Therefore, we

have limt→∞At ≤ γ. Since γ can be arbitrary close to zero, we prove the limt→∞At =
limt→∞[Ez1,...,zt−1 [DΨ(w

∗, wt)] = 0.

19

Seyoum, You

Now we try to prove the converge rate give ηt =
4

(t+1)σF
.

We have

At+1 ≤ At −
2

t+ 1
At +

16b

(t+ 1)2σ2
F

(58)

t(t+ 1)At+1 ≤ (t− 1)tAt +
16b

σ2
F

(59)

Applying this iteratively, we obtain

(T − 1)TAT ≤ (t1 − 1)t1At1 +
16b(T − t1)

σ2
F

(60)

AT ≤
(t1 − 1)t1At1
(T − 1)T

+
16b

Tσ2
F

(61)

Ez1,...,zT−1 [DΨ(w
∗, wT) ≤

(t1 − 1)t1Ez1,...,zt1−1 [DΨ(w
∗, wt1)

(T − 1)T
+

16b

Tσ2
F

(62)

The proof for the zero variance case is very similar to the proof of the positive variance
case, where we have the relationship

At+1 ≤ (1− ηtσF
2

)At (63)

from where we immediately get linear converge rate

A.2 Codes for empirical results

import numpy as np

import jax.numpy as jnp

import jax

import matplotlib.pyplot as plt

import cvxpy as cp

np.random.seed(0)

n_dim = 50

w_true = np.random.uniform(low=0, high=1, size=n_dim)

w_true = w_true / np.sum(w_true)

num_data_no_noisy = 1000

num_data_noisy = 5000

def generate_dataset(num_data=1000, noise_scale=0):

x = np.random.multivariate_normal(

mean=np.zeros(n_dim), cov=np.eye(n_dim), size=num_data)

y = x @ w_true + noise_scale * np.random.randn(num_data)

return x, y

xs_no_noise, ys_no_nonise = generate_dataset(num_data=num_data_no_noisy, noise_scale=0)

20

Convergence of OMD and SMD

xs_noise, ys_nonise = generate_dataset(num_data=num_data_noisy, noise_scale=0.2)

w0 = np.random.uniform(low=0, high=1, size=n_dim)

w0 = w0 / np.sum(w0)

def get_KL(w_true, w_current):

return np.sum(w_true * np.log(w_true / w_current))

print("Ground Truth w:", w_true)

print("w0:", w0)

print("The KL between inital guess and ground true:", get_KL(w_true=w_true, w_current=w0))

def get_function_value(w, x, y):

return (jnp.dot(w,x) - y)**2

def project_to_simplex_cvxpy(w):

n = len(w)

w_var = cp.Variable(n)

objective = cp.Minimize(cp.sum_squares(w_var - w))

constraints = [cp.sum(w_var) == 1, w_var >= 0]

prob = cp.Problem(objective, constraints)

prob.solve()

return w_var.value

def projected_gradient_descent(xs, ys, w0, step_size=0.1, decay=True, decay_rate=0.5):

w = w0

func_values = []

KLs_to_minimizer = [get_KL(w_true=w_true, w_current=w)]

for i, (x, y) in enumerate(zip(xs, ys)):

func_value, grad = jax.value_and_grad(get_function_value)(w, x, y)

func_values.append(func_value)

if decay:

alpha = step_size / (i + 1)**decay_rate

else:

alpha = step_size

w = w - alpha * grad

w = project_to_simplex_cvxpy(w)

KLs_to_minimizer.append(get_KL(w_true=w_true, w_current=w))

return w, func_values, KLs_to_minimizer

21

Seyoum, You

def mirror_descent(xs, ys, w0, step_size=0.1, decay=True, decay_rate=0.5):

w = w0

func_values = []

KLs_to_minimizer = [get_KL(w_true=w_true, w_current=w)]

for i, (x, y) in enumerate(zip(xs, ys)):

func_value, grad = jax.value_and_grad(get_function_value)(w, x, y)

func_values.append(func_value)

if decay:

alpha = step_size / (i + 1)**decay_rate

else:

alpha = step_size

Mirror descent update

w = w * np.exp(-alpha * grad)

w = w / np.sum(w)

KLs_to_minimizer.append(get_KL(w_true=w_true, w_current=w))

return w, func_values, KLs_to_minimizer

w_md, func_values_md, KLs_to_minimizer_md = mirror_descent(

xs=xs_no_noise, ys=ys_no_nonise, w0=w0, step_size=0.5, decay=False)

w_pgd, func_values_pgd, KLs_to_minimizer_pgd = projected_gradient_descent(

xs=xs_no_noise, ys=ys_no_nonise, w0=w0, step_size=0.001, decay=False)

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(func_values_md, label="mirror desecent")

ax.plot(func_values_pgd, label="projected gradient desecent")

ax.legend()

ax.set_title("func value with no noisy data")

ax.set_xlabel("iterations")

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(KLs_to_minimizer_md, label="mirror descent")

ax.plot(KLs_to_minimizer_pgd, label="projected gradient descent")

ax.legend()

ax.set_yscale("log")

ax.set_title("KL to minimizer with no noisy data")

ax.set_xlabel("iterations")

22

Convergence of OMD and SMD

plt.show()

w_md, func_values_md, KLs_to_minimizer_md = mirror_descent(

xs=xs_noise, ys=ys_nonise, w0=w0, step_size=0.1, decay=False)

w_md_linear_decay, func_values_md_linear_decay, KLs_to_minimizer_md_linear_decay = \

mirror_descent(xs=xs_noise, ys=ys_nonise, w0=w0, step_size=1, decay=True, decay_rate=1)

w_md_square_root_decay, func_values_md_square_root_decay, \

KLs_to_minimizer_md_square_root_decay = mirror_descent(

xs=xs_noise, ys=ys_nonise, w0=w0, step_size=0.5, decay=True, decay_rate=0.5)

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(func_values_md, label="constant step size")

ax.plot(func_values_md_linear_decay, label="linear decay step size")

ax.plot(func_values_md_square_root_decay, label="square root decay step size")

ax.legend()

ax.set_title("func value with noisy data")

ax.set_xlabel("iterations")

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(KLs_to_minimizer_md, label="constant step size")

ax.plot(KLs_to_minimizer_md_linear_decay, label="linear rate decay step size")

ax.plot(KLs_to_minimizer_md_square_root_decay, label="square root decay step size")

ax.legend()

ax.set_title("KL to minimizer with noisy data")

ax.set_xlabel("iterations")

plt.show()

Appendix B.

In this appendix we prove the following theorem from Section 6.2:

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., u ̸=
0 ⇒ v = w = 0 in a given dataset D). Let Nv0, Nw0 be the number of data points for which
v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0 ⇒ Iuv ≤ Iuw

with equality only if u is identically 0.

Proof. We use the notation:

Pv(i) =
N i
v

N
, i ̸= 0; Pv0 ≡ Pv(0) = 1−

∑
i ̸=0

Pv(i).

23

Seyoum, You

These values represent the (empirical) probabilities of v taking value i ̸= 0 and 0 respec-
tively. Entropies will be denoted by H. We aim to show that ∂Iuv

∂Pv0
< 0....

Appendix C. Code for Empirical Results (Paper 2)

import numpy as np

import matplotlib.pyplot as plt

def rosenbrock(x, y, a=1, b=100):

return (a - x)**2 + b*(y - x**2)**2

def rosenbrock_grad(x, y, a=1, b=100):

grad_x = -2*(a - x) - 4*b*x*(y - x**2)

grad_y = 2*b*(y - x**2)

return np.array([grad_x, grad_y])

def smd_rosenbrock(init_pos, iterations, step_size_func, a=1, b=100):

trajectory = [init_pos]

current_pos = np.array(init_pos)

for i in range(1, iterations):

grad = rosenbrock_grad(current_pos[0], current_pos[1], a, b)

step_size = step_size_func(i)

current_pos = current_pos - step_size * grad

trajectory.append(current_pos)

return np.array(trajectory)

def step_size_func(n, gamma_0=0.001):

return gamma_0 / np.sqrt(n)

init_pos = (-1, -1)

iterations = 10000000

trajectory = smd_rosenbrock(init_pos, iterations, step_size_func)

x_vals = np.linspace(-1.5, 1.5, 400)

y_vals = np.linspace(-0.5, 3, 400)

X, Y = np.meshgrid(x_vals, y_vals)

Z = rosenbrock(X, Y)

fig, ax = plt.subplots(figsize=(8, 6))

CS = ax.contour(X, Y, Z, levels=np.logspace(-0.5, 3.5, 20), cmap=’jet’)

ax.plot(trajectory[:, 0], trajectory[:, 1], marker=’o’, color=’black’, label=’Trajectory’)

ax.plot(1, 1, ’r*’, markersize=10, label=’Minimum (1,1)’)

24

Convergence of OMD and SMD

ax.set_xlabel(’x’)

ax.set_ylabel(’y’)

ax.set_title(’SMD on Rosenbrock Function’)

ax.legend()

plt.show()

from mpl_toolkits.mplot3d import Axes3D

def rosenbrock(x, y, a=1, b=100):

return (a - x)**2 + b * (y - x**2)**2

def rosenbrock_grad(x, y, a=1, b=100):

grad_x = -2 * (a - x) - 4 * b * x * (y - x**2)

grad_y = 2 * b * (y - x**2)

return np.array([grad_x, grad_y])

def smd_rosenbrock(init_pos, iterations, step_size_func, a=1, b=100):

trajectory = [init_pos]

current_pos = np.array(init_pos)

for i in range(1, iterations):

grad = rosenbrock_grad(current_pos[0], current_pos[1], a, b)

step_size = step_size_func(i)

current_pos = current_pos - step_size * grad

trajectory.append(current_pos)

return np.array(trajectory)

def step_size_func(n, gamma_0=0.001):

"""Define the decreasing step size function."""

return gamma_0 / np.sqrt(n)

init_pos = (-1, -1)

iterations = 1000000

trajectory = smd_rosenbrock(init_pos, iterations, step_size_func)

x_vals = np.linspace(-2, 2, 400)

y_vals = np.linspace(-1, 3, 400)

X, Y = np.meshgrid(x_vals, y_vals)

Z = rosenbrock(X, Y)

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection=’3d’)

25

Seyoum, You

surf = ax.plot_surface(X, Y, Z, cmap=’jet’, alpha=0.7, edgecolor=’none’)

ax.plot(trajectory[:, 0], trajectory[:, 1], rosenbrock(trajectory[:, 0], trajectory[:, 1]), ’r-’, marker=’o’, label=’Trajectory’)

ax.view_init(elev=45, azim=134)

ax.set_xlabel(’X axis’)

ax.set_ylabel(’Y axis’)

ax.set_zlabel(’Function Value’)

ax.set_title(’3D View of SMD on Rosenbrock Function’)

ax.legend()

plt.show()

def rosenbrock(x):

return sum(100.0 * (x[1:] - x[:-1]**2)**2 + (1 - x[:-1])**2)

def grad_rosenbrock(x):

grad = np.zeros_like(x)

grad[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])

grad[-1] = 200 * (x[-1] - x[-2]**2)

grad[1:-1] = -400 * x[1:-1] * (x[2:] - x[1:-1]**2) - 2 * (1 - x[1:-1]) + 200 * (x[1:-1] - x[:-2]**2)

return grad

def stochastic_mirror_descent(x_init, lr=0.01, num_steps=1000, beta=0.9, noise_scale=0.01):

x = x_init.copy()

v = np.zeros_like(x)

losses = []

for step in range(num_steps):

noise = np.random.normal(scale=noise_scale, size=x.shape)

grad = grad_rosenbrock(x) + noise

v = beta * v + (1 - beta) * grad

x -= lr * v

loss = rosenbrock(x)

losses.append(loss)

return x, losses

x_init = np.array([-1.5, -0.5, 0.5, 1.5])

x_final, losses = stochastic_mirror_descent(x_init)

plt.figure(figsize=(10, 6))

plt.plot(losses, label=’Stochastic Mirror Descent’, color=’blue’, linewidth=2)

26

Convergence of OMD and SMD

plt.yscale(’log’)

plt.xlabel(’Iteration’, fontsize=14)

plt.ylabel(’Loss (log scale)’, fontsize=14)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.legend(fontsize=14)

plt.grid(True, linestyle=’--’, alpha=0.6)

plt.tight_layout()

plt.show()

27

	Introduction
	Motivation for Online Learning
	Motivation for Online Mirror Descent

	First Paper
	Paper Setup and Assumptions
	Main Theoretical Results
	Numerical Experiment
	Discussion

	Second Paper
	Motivation and Previous Results
	Problem Setup
	Variational Coherence and Definitions of Quasi Convexity
	Algorithm
	Intuition and General Insight
	Global Convergence
	Local Convergence
	Numerical Experiments
	Discussion and Further Developments

	First paper theoretical proof and codes
	Proof sketch of the theorem
	Codes for empirical results

	
	Code for Empirical Results (Paper 2)

